{"title":"斯派克-布拉特定理的扩展和极限","authors":"ELDAR FISCHER, JOHANN A. MAKOWSKY","doi":"10.1017/jsl.2024.17","DOIUrl":null,"url":null,"abstract":"<p>The original Specker–Blatter theorem (1983) was formulated for classes of structures <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {C}$</span></span></img></span></span> of one or several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of such structures on the set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> is modularly C-finite (MC-finite). In previous work we extended this to structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author also showed that the Specker–Blatter theorem does not hold for one quaternary relation (2003).</p><p>If the vocabulary allows a constant symbol <span>c</span>, there are <span>n</span> possible interpretations on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> for <span>c</span>. We say that a constant <span>c</span> is <span>hard-wired</span> if <span>c</span> is always interpreted by the same element <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$j \\in [n]$</span></span></img></span></span>. In this paper we show: </p><ol><li><p><span>(i)</span> The Specker–Blatter theorem also holds for CMSOL when hard-wired constants are allowed. The proof method of Specker and Blatter does not work in this case.</p></li><li><p><span>(ii)</span> The Specker–Blatter theorem does not hold already for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {C}$</span></span></img></span></span> with one ternary relation definable in First Order Logic FOL. This was left open since 1983.</p></li></ol><p></p><p>Using hard-wired constants allows us to show MC-finiteness of counting functions of various restricted partition functions which were not known to be MC-finite till now. Among them we have the restricted Bell numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$B_{r,A}$</span></span></img></span></span>, restricted Stirling numbers of the second kind <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S_{r,A}$</span></span></img></span></span> or restricted Lah-numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$L_{r,A}$</span></span></img></span></span>. Here <span>r</span> is a non-negative integer and <span>A</span> is an ultimately periodic set of non-negative integers.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXTENSIONS AND LIMITS OF THE SPECKER–BLATTER THEOREM\",\"authors\":\"ELDAR FISCHER, JOHANN A. MAKOWSKY\",\"doi\":\"10.1017/jsl.2024.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The original Specker–Blatter theorem (1983) was formulated for classes of structures <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {C}$</span></span></img></span></span> of one or several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of such structures on the set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[n]$</span></span></img></span></span> is modularly C-finite (MC-finite). In previous work we extended this to structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author also showed that the Specker–Blatter theorem does not hold for one quaternary relation (2003).</p><p>If the vocabulary allows a constant symbol <span>c</span>, there are <span>n</span> possible interpretations on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[n]$</span></span></img></span></span> for <span>c</span>. We say that a constant <span>c</span> is <span>hard-wired</span> if <span>c</span> is always interpreted by the same element <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$j \\\\in [n]$</span></span></img></span></span>. In this paper we show: </p><ol><li><p><span>(i)</span> The Specker–Blatter theorem also holds for CMSOL when hard-wired constants are allowed. The proof method of Specker and Blatter does not work in this case.</p></li><li><p><span>(ii)</span> The Specker–Blatter theorem does not hold already for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {C}$</span></span></img></span></span> with one ternary relation definable in First Order Logic FOL. This was left open since 1983.</p></li></ol><p></p><p>Using hard-wired constants allows us to show MC-finiteness of counting functions of various restricted partition functions which were not known to be MC-finite till now. Among them we have the restricted Bell numbers <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$B_{r,A}$</span></span></img></span></span>, restricted Stirling numbers of the second kind <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_{r,A}$</span></span></img></span></span> or restricted Lah-numbers <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418114435066-0017:S0022481224000173:S0022481224000173_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L_{r,A}$</span></span></img></span></span>. Here <span>r</span> is a non-negative integer and <span>A</span> is an ultimately periodic set of non-negative integers.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最初的斯贝克-布拉特定理(1983)是针对可在一元二阶逻辑 MSOL 中定义的一个或多个二元关系的结构类 $\mathcal {C}$ 而提出的。该定理指出,集合 $[n]$ 上的此类结构的数量是模块化 C 有限(MC 有限)的。在之前的工作中,我们将其扩展到了可在 CMSOL(MSOL 扩展了模块计数量词)中定义的结构。第一作者还证明了斯贝克-布拉特定理对一个四元关系不成立(2003)。如果词汇表允许一个常量符号 c,那么在 $[n]$ 上有 n 种可能的 c 解释。本文将证明:(i)当允许硬连接常数时,Specker-Blatter 定理也适用于 CMSOL。在这种情况下,Specker 和 Blatter 的证明方法不起作用。(ii) 对于在一阶逻辑 FOL 中定义了一个三元关系的 $mathcal {C}$,Specker-Blatter 定理并不成立。利用硬连线常数,我们可以证明各种受限分区函数的计数函数的 MC 有限性,而到目前为止,我们还不知道这些函数是 MC 有限的。其中包括受限贝尔数 $B_{r,A}$、第二类受限斯特林数 $S_{r,A}$ 或受限拉数 $L_{r,A}$。这里,r 是一个非负整数,A 是一个非负整数的最终周期集合。
EXTENSIONS AND LIMITS OF THE SPECKER–BLATTER THEOREM
The original Specker–Blatter theorem (1983) was formulated for classes of structures $\mathcal {C}$ of one or several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of such structures on the set $[n]$ is modularly C-finite (MC-finite). In previous work we extended this to structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author also showed that the Specker–Blatter theorem does not hold for one quaternary relation (2003).
If the vocabulary allows a constant symbol c, there are n possible interpretations on $[n]$ for c. We say that a constant c is hard-wired if c is always interpreted by the same element $j \in [n]$. In this paper we show:
(i) The Specker–Blatter theorem also holds for CMSOL when hard-wired constants are allowed. The proof method of Specker and Blatter does not work in this case.
(ii) The Specker–Blatter theorem does not hold already for $\mathcal {C}$ with one ternary relation definable in First Order Logic FOL. This was left open since 1983.
Using hard-wired constants allows us to show MC-finiteness of counting functions of various restricted partition functions which were not known to be MC-finite till now. Among them we have the restricted Bell numbers $B_{r,A}$, restricted Stirling numbers of the second kind $S_{r,A}$ or restricted Lah-numbers $L_{r,A}$. Here r is a non-negative integer and A is an ultimately periodic set of non-negative integers.