M. Saranya Devi, T. Daniel Thangadurai, Sankarasekaran Shanmugaraju, Chithirai Pon Selvan, Yong Ill Lee
{"title":"从核桃壳中提取生物质废物用于去除污染物和储能:变废为宝综述","authors":"M. Saranya Devi, T. Daniel Thangadurai, Sankarasekaran Shanmugaraju, Chithirai Pon Selvan, Yong Ill Lee","doi":"10.1007/s10450-024-00458-7","DOIUrl":null,"url":null,"abstract":"<div><p>The scientific community is becoming increasingly interested in the production of activated carbon (AC) using pyrolyzed biomass wastes as potential sustainable precursors. Both chemical and physical methods may have a significant impact on the chemical and physical properties of AC, making it suitable for a variety of applications such as water pollution treatment, CO<sub>2</sub> capture, dye, and heavy metal (HM) removal, and energy storage. The properties of AC are significantly influenced by feedstock composition, pyrolysis conditions, and carbon activation parameters. In comparison to traditional AC, activated biochar appears to be a new potentially cost-effective, and environmentally friendly carbon material with a wide range of applications. Walnut is a well-known member of the <i>Juglandaceae</i> family. Walnut Shell (WS) is extremely tough and degrades very slowly, and the multiple synthesis procedures employ the shell to prepare AC. In this review article, a detailed list of products and different applications of AC from the WS is provided. The cited results explain the optimal conditions for an adsorption process, which include pH, adsorbent dosage, temperature, agitation speed, contact time, efficiency, adsorption capacity, fitting model, kinetics, and thermodynamics. In addition, it also describes the removal of a few organic compounds, and energy storage applications using parameters such as BET, different electrolytes, and specific capacitance.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"891 - 913"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass waste from walnut shell for pollutants removal and energy storage: a review on waste to wealth transformation\",\"authors\":\"M. Saranya Devi, T. Daniel Thangadurai, Sankarasekaran Shanmugaraju, Chithirai Pon Selvan, Yong Ill Lee\",\"doi\":\"10.1007/s10450-024-00458-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The scientific community is becoming increasingly interested in the production of activated carbon (AC) using pyrolyzed biomass wastes as potential sustainable precursors. Both chemical and physical methods may have a significant impact on the chemical and physical properties of AC, making it suitable for a variety of applications such as water pollution treatment, CO<sub>2</sub> capture, dye, and heavy metal (HM) removal, and energy storage. The properties of AC are significantly influenced by feedstock composition, pyrolysis conditions, and carbon activation parameters. In comparison to traditional AC, activated biochar appears to be a new potentially cost-effective, and environmentally friendly carbon material with a wide range of applications. Walnut is a well-known member of the <i>Juglandaceae</i> family. Walnut Shell (WS) is extremely tough and degrades very slowly, and the multiple synthesis procedures employ the shell to prepare AC. In this review article, a detailed list of products and different applications of AC from the WS is provided. The cited results explain the optimal conditions for an adsorption process, which include pH, adsorbent dosage, temperature, agitation speed, contact time, efficiency, adsorption capacity, fitting model, kinetics, and thermodynamics. In addition, it also describes the removal of a few organic compounds, and energy storage applications using parameters such as BET, different electrolytes, and specific capacitance.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"891 - 913\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00458-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00458-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
科学界对利用热解生物质废物作为潜在的可持续前体生产活性炭(AC)的兴趣与日俱增。化学和物理方法都可能对活性炭的化学和物理性质产生重大影响,使其适用于多种应用,如水污染处理、二氧化碳捕获、染料和重金属(HM)去除以及能源储存。活性生物碳的特性受原料成分、热解条件和碳活化参数的影响很大。与传统的活性炭相比,活性生物炭似乎是一种具有潜在成本效益的新型环保炭材料,具有广泛的应用前景。核桃是著名的胡桃科植物。核桃壳(WS)非常坚硬,降解速度非常慢,多种合成程序都使用核桃壳来制备 AC。在这篇综述文章中,详细列举了从核桃壳制备 AC 的产品和不同应用。引用的结果解释了吸附过程的最佳条件,包括 pH 值、吸附剂用量、温度、搅拌速度、接触时间、效率、吸附容量、拟合模型、动力学和热力学。此外,它还介绍了几种有机化合物的去除情况,以及利用 BET、不同电解质和比电容等参数的储能应用。
Biomass waste from walnut shell for pollutants removal and energy storage: a review on waste to wealth transformation
The scientific community is becoming increasingly interested in the production of activated carbon (AC) using pyrolyzed biomass wastes as potential sustainable precursors. Both chemical and physical methods may have a significant impact on the chemical and physical properties of AC, making it suitable for a variety of applications such as water pollution treatment, CO2 capture, dye, and heavy metal (HM) removal, and energy storage. The properties of AC are significantly influenced by feedstock composition, pyrolysis conditions, and carbon activation parameters. In comparison to traditional AC, activated biochar appears to be a new potentially cost-effective, and environmentally friendly carbon material with a wide range of applications. Walnut is a well-known member of the Juglandaceae family. Walnut Shell (WS) is extremely tough and degrades very slowly, and the multiple synthesis procedures employ the shell to prepare AC. In this review article, a detailed list of products and different applications of AC from the WS is provided. The cited results explain the optimal conditions for an adsorption process, which include pH, adsorbent dosage, temperature, agitation speed, contact time, efficiency, adsorption capacity, fitting model, kinetics, and thermodynamics. In addition, it also describes the removal of a few organic compounds, and energy storage applications using parameters such as BET, different electrolytes, and specific capacitance.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.