Ziyang Xing, Xiaoqiang Di, Hui Qi, Jing Chen, Jinhui Cao, Jinyao Liu, Xusheng Li, Zichu Zhang, Yuchen Zhu, Lei Chen, Kai Huang, Xinghan Huo
{"title":"缓解以信息为中心的卫星网络突发流量的最佳复制策略:聚焦遥感图像传输","authors":"Ziyang Xing, Xiaoqiang Di, Hui Qi, Jing Chen, Jinhui Cao, Jinyao Liu, Xusheng Li, Zichu Zhang, Yuchen Zhu, Lei Chen, Kai Huang, Xinghan Huo","doi":"10.1631/fitee.2400025","DOIUrl":null,"url":null,"abstract":"<p>Information-centric satellite networks play a crucial role in remote sensing applications, particularly in the transmission of remote sensing images. However, the occurrence of burst traffic poses significant challenges in meeting the increased bandwidth demands. Traditional content delivery networks are ill-equipped to handle such bursts due to their pre-deployed content. In this paper, we propose an optimal replication strategy for mitigating burst traffic in information-centric satellite networks, specifically focusing on the transmission of remote sensing images. Our strategy involves selecting the most optimal replication delivery satellite node when multiple users subscribe to the same remote sensing content within a short time, effectively reducing network transmission data and preventing throughput degradation caused by burst traffic expansion. We formulate the content delivery process as a multi-objective optimization problem and apply Markov decision processes to determine the optimal value for burst traffic reduction. To address these challenges, we leverage federated reinforcement learning techniques. Additionally, we use bloom filters with subdivision and data identification methods to enable rapid retrieval and encoding of remote sensing images. Through software-based simulations using a low Earth orbit satellite constellation, we validate the effectiveness of our proposed strategy, achieving a significant 17% reduction in the average delivery delay. This paper offers valuable insights into efficient content delivery in satellite networks, specifically targeting the transmission of remote sensing images, and presents a promising approach to mitigate burst traffic challenges in information-centric environments.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"41 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal replication strategy for mitigating burst traffic in information-centric satellite networks: a focus on remote sensing image transmission\",\"authors\":\"Ziyang Xing, Xiaoqiang Di, Hui Qi, Jing Chen, Jinhui Cao, Jinyao Liu, Xusheng Li, Zichu Zhang, Yuchen Zhu, Lei Chen, Kai Huang, Xinghan Huo\",\"doi\":\"10.1631/fitee.2400025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Information-centric satellite networks play a crucial role in remote sensing applications, particularly in the transmission of remote sensing images. However, the occurrence of burst traffic poses significant challenges in meeting the increased bandwidth demands. Traditional content delivery networks are ill-equipped to handle such bursts due to their pre-deployed content. In this paper, we propose an optimal replication strategy for mitigating burst traffic in information-centric satellite networks, specifically focusing on the transmission of remote sensing images. Our strategy involves selecting the most optimal replication delivery satellite node when multiple users subscribe to the same remote sensing content within a short time, effectively reducing network transmission data and preventing throughput degradation caused by burst traffic expansion. We formulate the content delivery process as a multi-objective optimization problem and apply Markov decision processes to determine the optimal value for burst traffic reduction. To address these challenges, we leverage federated reinforcement learning techniques. Additionally, we use bloom filters with subdivision and data identification methods to enable rapid retrieval and encoding of remote sensing images. Through software-based simulations using a low Earth orbit satellite constellation, we validate the effectiveness of our proposed strategy, achieving a significant 17% reduction in the average delivery delay. This paper offers valuable insights into efficient content delivery in satellite networks, specifically targeting the transmission of remote sensing images, and presents a promising approach to mitigate burst traffic challenges in information-centric environments.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2400025\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2400025","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimal replication strategy for mitigating burst traffic in information-centric satellite networks: a focus on remote sensing image transmission
Information-centric satellite networks play a crucial role in remote sensing applications, particularly in the transmission of remote sensing images. However, the occurrence of burst traffic poses significant challenges in meeting the increased bandwidth demands. Traditional content delivery networks are ill-equipped to handle such bursts due to their pre-deployed content. In this paper, we propose an optimal replication strategy for mitigating burst traffic in information-centric satellite networks, specifically focusing on the transmission of remote sensing images. Our strategy involves selecting the most optimal replication delivery satellite node when multiple users subscribe to the same remote sensing content within a short time, effectively reducing network transmission data and preventing throughput degradation caused by burst traffic expansion. We formulate the content delivery process as a multi-objective optimization problem and apply Markov decision processes to determine the optimal value for burst traffic reduction. To address these challenges, we leverage federated reinforcement learning techniques. Additionally, we use bloom filters with subdivision and data identification methods to enable rapid retrieval and encoding of remote sensing images. Through software-based simulations using a low Earth orbit satellite constellation, we validate the effectiveness of our proposed strategy, achieving a significant 17% reduction in the average delivery delay. This paper offers valuable insights into efficient content delivery in satellite networks, specifically targeting the transmission of remote sensing images, and presents a promising approach to mitigate burst traffic challenges in information-centric environments.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.