基于广义赫伦平均值算子和模糊稳健 PCA 算法的混合分类器

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Uncertainty Fuzziness and Knowledge-Based Systems Pub Date : 2024-04-19 DOI:10.1142/s0218488524500077
Onesfole Kurama
{"title":"基于广义赫伦平均值算子和模糊稳健 PCA 算法的混合分类器","authors":"Onesfole Kurama","doi":"10.1142/s0218488524500077","DOIUrl":null,"url":null,"abstract":"<p>We present a new classifier that uses a generalized Heronian mean (GHM) operator, and fuzzy robust principal component analysis (FRPCA) algorithms. The similarity classifier was earlier studied with other aggregation operators, including: the ordered weighted averaging (OWA), generalized mean, arithmetic mean among others. Parameters in the GHM operator makes the new classifier suitable for handling a variety of modeling problems involving parameter settings. Motivated by the nature of the GHM operator, we examine which FRPCA algorithm is suitable for use to achieve optimal performance of the new classifier. The effects of dimensionality reduction and fuzziness variable on classification accuracy are examined. The performance of the new classifier is tested on three real-world datasets: fertility, horse-colic, and Haberman’s survival. Compared with previously studied similarity classifiers, the new method achieved improved classification accuracy for the tested datasets. In fertility dataset, the new classifier achieved improvements in accuracy of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>4</mn><mo>.</mo><mn>6</mn><mn>0</mn><mi>%</mi><mo>,</mo><mn>1</mn><mn>9</mn><mo>.</mo><mn>7</mn><mn>3</mn><mi>%</mi></math></span><span></span>, and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mn>3</mn><mo>.</mo><mn>0</mn><mn>0</mn><mi>%</mi></math></span><span></span> compared with the OWA, generalized mean, and arithmetic mean based classifiers respectively. The new classifier is simpler to implement since it does not require any weight generation criteria as the case is for the OWA based classifier.</p>","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"29 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Classifier Based on the Generalized Heronian Mean Operator and Fuzzy Robust PCA Algorithms\",\"authors\":\"Onesfole Kurama\",\"doi\":\"10.1142/s0218488524500077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a new classifier that uses a generalized Heronian mean (GHM) operator, and fuzzy robust principal component analysis (FRPCA) algorithms. The similarity classifier was earlier studied with other aggregation operators, including: the ordered weighted averaging (OWA), generalized mean, arithmetic mean among others. Parameters in the GHM operator makes the new classifier suitable for handling a variety of modeling problems involving parameter settings. Motivated by the nature of the GHM operator, we examine which FRPCA algorithm is suitable for use to achieve optimal performance of the new classifier. The effects of dimensionality reduction and fuzziness variable on classification accuracy are examined. The performance of the new classifier is tested on three real-world datasets: fertility, horse-colic, and Haberman’s survival. Compared with previously studied similarity classifiers, the new method achieved improved classification accuracy for the tested datasets. In fertility dataset, the new classifier achieved improvements in accuracy of <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mn>4</mn><mo>.</mo><mn>6</mn><mn>0</mn><mi>%</mi><mo>,</mo><mn>1</mn><mn>9</mn><mo>.</mo><mn>7</mn><mn>3</mn><mi>%</mi></math></span><span></span>, and <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mn>3</mn><mo>.</mo><mn>0</mn><mn>0</mn><mi>%</mi></math></span><span></span> compared with the OWA, generalized mean, and arithmetic mean based classifiers respectively. The new classifier is simpler to implement since it does not require any weight generation criteria as the case is for the OWA based classifier.</p>\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218488524500077\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218488524500077","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的分类器,它使用广义希罗尼均值(GHM)算子和模糊鲁棒主成分分析(FRPCA)算法。此前,我们曾使用其他聚合算子对相似性分类器进行过研究,包括:有序加权平均(OWA)、广义均值、算术平均等。GHM 算子中的参数使新分类器适用于处理各种涉及参数设置的建模问题。受 GHM 算子性质的启发,我们研究了哪种 FRPCA 算法适合用于实现新分类器的最佳性能。我们还考察了降维和模糊变量对分类准确性的影响。新分类器的性能在三个真实世界的数据集上进行了测试:生育率、马的结肠和哈伯曼的存活率。与之前研究的相似性分类器相比,新方法提高了测试数据集的分类准确率。在生育率数据集中,与基于 OWA、广义平均值和算术平均值的分类器相比,新分类器的准确率分别提高了 14.60%、19.73% 和 23.00%。由于新分类器不像基于 OWA 的分类器那样需要任何权重生成标准,因此实施起来更简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Classifier Based on the Generalized Heronian Mean Operator and Fuzzy Robust PCA Algorithms

We present a new classifier that uses a generalized Heronian mean (GHM) operator, and fuzzy robust principal component analysis (FRPCA) algorithms. The similarity classifier was earlier studied with other aggregation operators, including: the ordered weighted averaging (OWA), generalized mean, arithmetic mean among others. Parameters in the GHM operator makes the new classifier suitable for handling a variety of modeling problems involving parameter settings. Motivated by the nature of the GHM operator, we examine which FRPCA algorithm is suitable for use to achieve optimal performance of the new classifier. The effects of dimensionality reduction and fuzziness variable on classification accuracy are examined. The performance of the new classifier is tested on three real-world datasets: fertility, horse-colic, and Haberman’s survival. Compared with previously studied similarity classifiers, the new method achieved improved classification accuracy for the tested datasets. In fertility dataset, the new classifier achieved improvements in accuracy of 14.60%,19.73%, and 23.00% compared with the OWA, generalized mean, and arithmetic mean based classifiers respectively. The new classifier is simpler to implement since it does not require any weight generation criteria as the case is for the OWA based classifier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
期刊最新文献
A Structure-Enhanced Heterogeneous Graph Representation Learning with Attention-Supplemented Embedding Fusion Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data PSO Based Constraint Optimization of Intuitionistic Fuzzy Shortest Path Problem in an Undirected Network Model Predictive Control for Interval Type-2 Fuzzy Systems with Unknown Time-Varying Delay in States and Input Vector An OWA Based MCDM Framework for Analyzing Multidimensional Twitter Data: A Case Study on the Citizen-Government Engagement During COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1