利用 MR 阻尼器的垂直质量隔离法实现多自由度结构的抗震控制

IF 2.6 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Engineering and Engineering Vibration Pub Date : 2024-04-19 DOI:10.1007/s11803-024-2251-y
Mohamad Shahrokh Abdi, Masoud Nekooei, Mohammad-Ali Jafari
{"title":"利用 MR 阻尼器的垂直质量隔离法实现多自由度结构的抗震控制","authors":"Mohamad Shahrokh Abdi, Masoud Nekooei, Mohammad-Ali Jafari","doi":"10.1007/s11803-024-2251-y","DOIUrl":null,"url":null,"abstract":"<p>Vertical mass isolation (VMI) is one of the novel methods for the seismic control of structures. In this method, the entire structure is assumed to consist of two mass and stiffness subsystems, and an isolated layer is located among them. In this study, the magnetorheological damper in three modes: passive-off, passive-on, and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems. Multi-degrees-of-freedom structures with 5, 10, and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes. On each level, the displacement of MR dampers was taken into account. The responses of maximum displacement, maximum inter-story drift, and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures. According to the results, the semi-active control method can reduce the response by more than 12% compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures. This method can reduce more than 16% and 20% of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure, respectively.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic control of multi-degrees-of-freedom structures by vertical mass isolation method using MR dampers\",\"authors\":\"Mohamad Shahrokh Abdi, Masoud Nekooei, Mohammad-Ali Jafari\",\"doi\":\"10.1007/s11803-024-2251-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vertical mass isolation (VMI) is one of the novel methods for the seismic control of structures. In this method, the entire structure is assumed to consist of two mass and stiffness subsystems, and an isolated layer is located among them. In this study, the magnetorheological damper in three modes: passive-off, passive-on, and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems. Multi-degrees-of-freedom structures with 5, 10, and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes. On each level, the displacement of MR dampers was taken into account. The responses of maximum displacement, maximum inter-story drift, and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures. According to the results, the semi-active control method can reduce the response by more than 12% compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures. This method can reduce more than 16% and 20% of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure, respectively.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2251-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2251-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

垂直质量隔离(VMI)是结构抗震控制的新方法之一。在这种方法中,假定整个结构由两个质量和刚度子系统组成,在它们之间有一个隔离层。在本研究中,磁流变阻尼器在三种模式下被用作两个子系统之间的隔离层:被动-关闭、被动-开启和电压在零至 9 伏特之间可变的半主动模式。在 11 对近场地震中,对 5 层、10 层和 15 层的二维多自由度结构进行了研究。每一层都考虑了 MR 阻尼器的位移。比较了受控建筑和非受控建筑的最大位移、最大层间漂移和最大基底剪力响应,以评估建议的结构抗震控制方法。结果表明,就结构质量子系统的最大位移而言,半主动控制方法可比非控制模式减少 12% 以上的响应。就结构的最大层间漂移和基底剪力而言,该方法可分别比失控模式减少 16% 和 20% 以上的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic control of multi-degrees-of-freedom structures by vertical mass isolation method using MR dampers

Vertical mass isolation (VMI) is one of the novel methods for the seismic control of structures. In this method, the entire structure is assumed to consist of two mass and stiffness subsystems, and an isolated layer is located among them. In this study, the magnetorheological damper in three modes: passive-off, passive-on, and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems. Multi-degrees-of-freedom structures with 5, 10, and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes. On each level, the displacement of MR dampers was taken into account. The responses of maximum displacement, maximum inter-story drift, and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures. According to the results, the semi-active control method can reduce the response by more than 12% compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures. This method can reduce more than 16% and 20% of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
21.40%
发文量
1057
审稿时长
9 months
期刊介绍: Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery. The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.
期刊最新文献
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake Physics-based seismic analysis of ancient wood structure: fault-to-structure simulation Nonlinear vibration of Timoshenko FG porous sandwich beams subjected to a harmonic axial load Wave propagation of a functionally graded plate via integral variables with a hyperbolic arcsine function Optimal design for rubber concrete layered periodic foundations based on the analytical approximations of band gaps and mapping relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1