通用多量子量子计算的最佳量子电路

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-04-19 DOI:10.1002/qute.202400033
Gui-Long Jiang, Wen-Qiang Liu, Hai-Rui Wei
{"title":"通用多量子量子计算的最佳量子电路","authors":"Gui-Long Jiang,&nbsp;Wen-Qiang Liu,&nbsp;Hai-Rui Wei","doi":"10.1002/qute.202400033","DOIUrl":null,"url":null,"abstract":"<p>Quantum circuits of a general quantum gate acting on multiple <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-level quantum systems play a prominent role in multi-valued quantum computation. A recursive Cartan decomposition of semi-simple unitary Lie group <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <msup>\n <mn>3</mn>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$U(3^n)$</annotation>\n </semantics></math> (arbitrary <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-qutrit gate) is first proposed with a rigorous proof, which completely decomposes an <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-qutrit gate into local and non-local operations. On this basis, an explicit quantum circuit is designed for implementing arbitrary two-qutrit gates, and the cost of the construction is 21 generalized controlled <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> (GCX) and controlled increment (CINC) gates less than the earlier best result of 26 GGXs. Furthermore, the program is extended to the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-qutrit system, and the quantum circuit of generic <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-qutrit gates contained <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>41</mn>\n <mn>96</mn>\n </mfrac>\n <mo>·</mo>\n <msup>\n <mn>3</mn>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <mo>−</mo>\n <mn>4</mn>\n <mo>·</mo>\n <msup>\n <mn>3</mn>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>−</mo>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mn>2</mn>\n </mfrac>\n <mo>+</mo>\n <mfrac>\n <mi>n</mi>\n <mn>4</mn>\n </mfrac>\n <mo>−</mo>\n <mfrac>\n <mn>29</mn>\n <mn>32</mn>\n </mfrac>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\frac{41}{96}\\cdot 3^{2n}-4\\cdot 3^{n-1}-(\\frac{n^2}{2}+\\frac{n}{4}-\\frac{29}{32})$</annotation>\n </semantics></math> GGXs and CINCs is presented. Such asymptotically optimal structure is the best known result so far and its strength becomes more remarkable as <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> increases, for example, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$n=5$</annotation>\n </semantics></math>, the program saves 7146 GCXs compared to the previous best result. In addition, concrete recursive decomposition expressions is given for each non-local operation instead of only quantum circuit diagrams.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Quantum Circuits for General Multi-Qutrit Quantum Computation\",\"authors\":\"Gui-Long Jiang,&nbsp;Wen-Qiang Liu,&nbsp;Hai-Rui Wei\",\"doi\":\"10.1002/qute.202400033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum circuits of a general quantum gate acting on multiple <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-level quantum systems play a prominent role in multi-valued quantum computation. A recursive Cartan decomposition of semi-simple unitary Lie group <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n <mo>(</mo>\\n <msup>\\n <mn>3</mn>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$U(3^n)$</annotation>\\n </semantics></math> (arbitrary <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-qutrit gate) is first proposed with a rigorous proof, which completely decomposes an <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-qutrit gate into local and non-local operations. On this basis, an explicit quantum circuit is designed for implementing arbitrary two-qutrit gates, and the cost of the construction is 21 generalized controlled <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> (GCX) and controlled increment (CINC) gates less than the earlier best result of 26 GGXs. Furthermore, the program is extended to the <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-qutrit system, and the quantum circuit of generic <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-qutrit gates contained <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mn>41</mn>\\n <mn>96</mn>\\n </mfrac>\\n <mo>·</mo>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mo>−</mo>\\n <mn>4</mn>\\n <mo>·</mo>\\n <msup>\\n <mn>3</mn>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>−</mo>\\n <mrow>\\n <mo>(</mo>\\n <mfrac>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mn>2</mn>\\n </mfrac>\\n <mo>+</mo>\\n <mfrac>\\n <mi>n</mi>\\n <mn>4</mn>\\n </mfrac>\\n <mo>−</mo>\\n <mfrac>\\n <mn>29</mn>\\n <mn>32</mn>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\frac{41}{96}\\\\cdot 3^{2n}-4\\\\cdot 3^{n-1}-(\\\\frac{n^2}{2}+\\\\frac{n}{4}-\\\\frac{29}{32})$</annotation>\\n </semantics></math> GGXs and CINCs is presented. Such asymptotically optimal structure is the best known result so far and its strength becomes more remarkable as <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> increases, for example, when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$n=5$</annotation>\\n </semantics></math>, the program saves 7146 GCXs compared to the previous best result. In addition, concrete recursive decomposition expressions is given for each non-local operation instead of only quantum circuit diagrams.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

作用于多级量子系统的通用量子门量子电路在多值量子计算中发挥着重要作用。本文首次提出了半简单单元李群(任意-量子门)的递归卡坦分解,并给出了严格的证明,将-量子门完全分解为局部和非局部操作。在此基础上,设计了实现任意两-库特里特门的显式量子电路,其构造成本为 21 个广义受控门(GCX)和受控增量门(CINC),低于早先 26 个 GGX 的最佳结果。此外,该方案还扩展到了-库特里特系统,并提出了包含 GGX 和 CINC 的通用-库特里特门量子电路。这种渐近最优结构是迄今为止已知的最佳结果,而且其优势随着时间的推移变得更加显著,例如,与之前的最佳结果相比,当 ,程序节省了 7146 个 GCX。此外,还给出了每个非局部操作的具体递归分解表达式,而不仅仅是量子电路图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Quantum Circuits for General Multi-Qutrit Quantum Computation

Quantum circuits of a general quantum gate acting on multiple d $d$ -level quantum systems play a prominent role in multi-valued quantum computation. A recursive Cartan decomposition of semi-simple unitary Lie group U ( 3 n ) $U(3^n)$ (arbitrary n $n$ -qutrit gate) is first proposed with a rigorous proof, which completely decomposes an n $n$ -qutrit gate into local and non-local operations. On this basis, an explicit quantum circuit is designed for implementing arbitrary two-qutrit gates, and the cost of the construction is 21 generalized controlled X $X$ (GCX) and controlled increment (CINC) gates less than the earlier best result of 26 GGXs. Furthermore, the program is extended to the n $n$ -qutrit system, and the quantum circuit of generic n $n$ -qutrit gates contained 41 96 · 3 2 n 4 · 3 n 1 ( n 2 2 + n 4 29 32 ) $\frac{41}{96}\cdot 3^{2n}-4\cdot 3^{n-1}-(\frac{n^2}{2}+\frac{n}{4}-\frac{29}{32})$ GGXs and CINCs is presented. Such asymptotically optimal structure is the best known result so far and its strength becomes more remarkable as n $n$ increases, for example, when n = 5 $n=5$ , the program saves 7146 GCXs compared to the previous best result. In addition, concrete recursive decomposition expressions is given for each non-local operation instead of only quantum circuit diagrams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Back Cover: Universal Quantum Fisher Information and Simultaneous Occurrence of Landau-Class and Topological-Class Transitions in Non-Hermitian Jaynes-Cummings Models (Adv. Quantum Technol. 10/2024) Front Cover: Solid-State Qubit as an On-Chip Controller for Non-Classical Field States (Adv. Quantum Technol. 10/2024) Inside Front Cover: Nonlinear Effect Analysis and Sensitivity Improvement in Spin Exchange Relaxation Free Atomic Magnetometers (Adv. Quantum Technol. 10/2024) Issue Information (Adv. Quantum Technol. 10/2024) Front Cover: Superconducting Diode Effect in a Constricted Nanowire (Adv. Quantum Technol. 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1