基于深度强化学习的 IRS 辅助 MISO-NOMA 系统鲁棒设计

Abdulhamed Waraiet;Kanapathippillai Cumanan;Zhiguo Ding;Octavia A. Dobre
{"title":"基于深度强化学习的 IRS 辅助 MISO-NOMA 系统鲁棒设计","authors":"Abdulhamed Waraiet;Kanapathippillai Cumanan;Zhiguo Ding;Octavia A. Dobre","doi":"10.1109/TMLCN.2024.3385748","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust design for an intelligent reflecting surface (IRS)-assisted multiple-input single output non-orthogonal multiple access (NOMA) system. By considering channel uncertainties, the original robust design problem is formulated as a sum-rate maximization problem under a set of constraints. In particular, the uncertainties associated with reflected channels through IRS elements and direct channels are taken into account in the design and they are modelled as bounded errors. However, the original robust problem is not jointly convex in terms of beamformers at the base station and phase shifts of IRS elements. Therefore, we reformulate the original robust design as a reinforcement learning problem and develop an algorithm based on the twin-delayed deep deterministic policy gradient agent (also known as TD3). In particular, the proposed algorithm solves the original problem by jointly designing the beamformers and the phase shifts, which is not possible with conventional optimization techniques. Numerical results are provided to validate the effectiveness and evaluate the performance of the proposed robust design. In particular, the results demonstrate the competitive and promising capabilities of the proposed robust algorithm, which achieves significant gains in terms of robustness and system sum-rates over the baseline deep deterministic policy gradient agent. In addition, the algorithm has the ability to deal with fixed and dynamic channels, which gives deep reinforcement learning methods an edge over hand-crafted convex optimization-based algorithms.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"424-441"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494408","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning-Based Robust Design for an IRS-Assisted MISO-NOMA System\",\"authors\":\"Abdulhamed Waraiet;Kanapathippillai Cumanan;Zhiguo Ding;Octavia A. Dobre\",\"doi\":\"10.1109/TMLCN.2024.3385748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust design for an intelligent reflecting surface (IRS)-assisted multiple-input single output non-orthogonal multiple access (NOMA) system. By considering channel uncertainties, the original robust design problem is formulated as a sum-rate maximization problem under a set of constraints. In particular, the uncertainties associated with reflected channels through IRS elements and direct channels are taken into account in the design and they are modelled as bounded errors. However, the original robust problem is not jointly convex in terms of beamformers at the base station and phase shifts of IRS elements. Therefore, we reformulate the original robust design as a reinforcement learning problem and develop an algorithm based on the twin-delayed deep deterministic policy gradient agent (also known as TD3). In particular, the proposed algorithm solves the original problem by jointly designing the beamformers and the phase shifts, which is not possible with conventional optimization techniques. Numerical results are provided to validate the effectiveness and evaluate the performance of the proposed robust design. In particular, the results demonstrate the competitive and promising capabilities of the proposed robust algorithm, which achieves significant gains in terms of robustness and system sum-rates over the baseline deep deterministic policy gradient agent. In addition, the algorithm has the ability to deal with fixed and dynamic channels, which gives deep reinforcement learning methods an edge over hand-crafted convex optimization-based algorithms.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"2 \",\"pages\":\"424-441\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494408\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494408/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494408/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了智能反射面(IRS)辅助多输入单输出非正交多址(NOMA)系统的稳健设计方案。考虑到信道的不确定性,最初的鲁棒设计问题被表述为一组约束条件下的总速率最大化问题。特别是,设计中考虑了与通过 IRS 元件的反射信道和直接信道相关的不确定性,并将其模拟为有界误差。然而,就基站的波束成形器和 IRS 信元的相移而言,原始的稳健问题并不是联合凸问题。因此,我们将原始鲁棒设计重新表述为强化学习问题,并开发了一种基于双延迟深度确定性策略梯度代理(也称为 TD3)的算法。特别是,所提出的算法通过联合设计波束成形器和相移来解决原始问题,这是传统优化技术无法实现的。本文提供了数值结果,以验证所提稳健设计的有效性并评估其性能。特别是,结果表明了所提出的鲁棒算法的竞争力和前景,与基线深度确定性策略梯度代理相比,该算法在鲁棒性和系统总和率方面取得了显著提高。此外,该算法还能处理固定和动态信道,这使得深度强化学习方法比基于凸优化的手工算法更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning-Based Robust Design for an IRS-Assisted MISO-NOMA System
In this paper, we propose a robust design for an intelligent reflecting surface (IRS)-assisted multiple-input single output non-orthogonal multiple access (NOMA) system. By considering channel uncertainties, the original robust design problem is formulated as a sum-rate maximization problem under a set of constraints. In particular, the uncertainties associated with reflected channels through IRS elements and direct channels are taken into account in the design and they are modelled as bounded errors. However, the original robust problem is not jointly convex in terms of beamformers at the base station and phase shifts of IRS elements. Therefore, we reformulate the original robust design as a reinforcement learning problem and develop an algorithm based on the twin-delayed deep deterministic policy gradient agent (also known as TD3). In particular, the proposed algorithm solves the original problem by jointly designing the beamformers and the phase shifts, which is not possible with conventional optimization techniques. Numerical results are provided to validate the effectiveness and evaluate the performance of the proposed robust design. In particular, the results demonstrate the competitive and promising capabilities of the proposed robust algorithm, which achieves significant gains in terms of robustness and system sum-rates over the baseline deep deterministic policy gradient agent. In addition, the algorithm has the ability to deal with fixed and dynamic channels, which gives deep reinforcement learning methods an edge over hand-crafted convex optimization-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications Multi-Agent Reinforcement Learning With Action Masking for UAV-Enabled Mobile Communications Online Learning for Intelligent Thermal Management of Interference-Coupled and Passively Cooled Base Stations Robust and Lightweight Modeling of IoT Network Behaviors From Raw Traffic Packets Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1