{"title":"ET-PointPillars:基于优化体素下采样的改进型三维物体检测 PointPillars","authors":"Yiyi Liu, Zhengyi Yang, JianLin Tong, Jiajia Yang, Jiongcheng Peng, Lihang Zhang, Wangxin Cheng","doi":"10.1007/s00138-024-01538-y","DOIUrl":null,"url":null,"abstract":"<p>The preprocessing of point cloud data has always been an important problem in 3D object detection. Due to the large volume of point cloud data, voxelization methods are often used to represent the point cloud while reducing data density. However, common voxelization randomly selects sampling points from voxels, which often fails to represent local spatial features well due to noise. To preserve local features, this paper proposes an optimized voxel downsampling(OVD) method based on evidence theory. This method uses fuzzy sets to model basic probability assignments (BPAs) for each candidate point, incorporating point location information. It then employs evidence theory to fuse the BPAs and determine the selected sampling points. In the PointPillars 3D object detection algorithm, the point cloud is partitioned into pillars and encoded using each pillar’s points. Convolutional neural networks are used for feature extraction and detection. Another contribution is the proposed improved PointPillars based on evidence theory (ET-PointPillars) by introducing an OVD-based feature point sampling module in the PointPillars’ pillar feature network, which can select feature points in pillars using the optimized method, computes offsets to these points, and adds them as features to facilitate learning more object characteristics, improving traditional PointPillars. Experiments on the KITTI datasets validate the method’s ability to preserve local spatial features. Results showed improved detection precision, with a <span>\\(2.73\\%\\)</span> average increase for pedestrians and cyclists on KITTI.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"101 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ET-PointPillars: improved PointPillars for 3D object detection based on optimized voxel downsampling\",\"authors\":\"Yiyi Liu, Zhengyi Yang, JianLin Tong, Jiajia Yang, Jiongcheng Peng, Lihang Zhang, Wangxin Cheng\",\"doi\":\"10.1007/s00138-024-01538-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The preprocessing of point cloud data has always been an important problem in 3D object detection. Due to the large volume of point cloud data, voxelization methods are often used to represent the point cloud while reducing data density. However, common voxelization randomly selects sampling points from voxels, which often fails to represent local spatial features well due to noise. To preserve local features, this paper proposes an optimized voxel downsampling(OVD) method based on evidence theory. This method uses fuzzy sets to model basic probability assignments (BPAs) for each candidate point, incorporating point location information. It then employs evidence theory to fuse the BPAs and determine the selected sampling points. In the PointPillars 3D object detection algorithm, the point cloud is partitioned into pillars and encoded using each pillar’s points. Convolutional neural networks are used for feature extraction and detection. Another contribution is the proposed improved PointPillars based on evidence theory (ET-PointPillars) by introducing an OVD-based feature point sampling module in the PointPillars’ pillar feature network, which can select feature points in pillars using the optimized method, computes offsets to these points, and adds them as features to facilitate learning more object characteristics, improving traditional PointPillars. Experiments on the KITTI datasets validate the method’s ability to preserve local spatial features. Results showed improved detection precision, with a <span>\\\\(2.73\\\\%\\\\)</span> average increase for pedestrians and cyclists on KITTI.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01538-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01538-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ET-PointPillars: improved PointPillars for 3D object detection based on optimized voxel downsampling
The preprocessing of point cloud data has always been an important problem in 3D object detection. Due to the large volume of point cloud data, voxelization methods are often used to represent the point cloud while reducing data density. However, common voxelization randomly selects sampling points from voxels, which often fails to represent local spatial features well due to noise. To preserve local features, this paper proposes an optimized voxel downsampling(OVD) method based on evidence theory. This method uses fuzzy sets to model basic probability assignments (BPAs) for each candidate point, incorporating point location information. It then employs evidence theory to fuse the BPAs and determine the selected sampling points. In the PointPillars 3D object detection algorithm, the point cloud is partitioned into pillars and encoded using each pillar’s points. Convolutional neural networks are used for feature extraction and detection. Another contribution is the proposed improved PointPillars based on evidence theory (ET-PointPillars) by introducing an OVD-based feature point sampling module in the PointPillars’ pillar feature network, which can select feature points in pillars using the optimized method, computes offsets to these points, and adds them as features to facilitate learning more object characteristics, improving traditional PointPillars. Experiments on the KITTI datasets validate the method’s ability to preserve local spatial features. Results showed improved detection precision, with a \(2.73\%\) average increase for pedestrians and cyclists on KITTI.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.