R. E. Klishchenko, I. V. Kornienko, V. V. Honcharuk
{"title":"通过对受酸性紫 7 污染的废水进行质化学处理制备碳微纳米材料","authors":"R. E. Klishchenko, I. V. Kornienko, V. V. Honcharuk","doi":"10.3103/S1063455X24020097","DOIUrl":null,"url":null,"abstract":"<p>The plasma-chemical decomposition of Acid Violet 7 dye and simultaneous production of carbon micro- and nanomaterials were investigated. For the purification of wastewater contaminated with the dye, we used a plasma electrochemical setup with modified electrodes. The experiments were conducted in a galvanostatic mode with current intensities of 45 and 80 A and voltages ranging from 21 to 24 V. Two types of carbon-containing degradation products were formed. One type comprised fine-dispersed hydrophobic material, which, due to its low specific weight, hydrophobicity, and inclusion of gas bubbles, floated and concentrated at the interface between the solution and air phases. This material predominantly consisted of particles ranging in size from 1 to 5 µm, with some particles in the order of hundreds of nanometers present as well. Another type consisted of hydrophilic particles larger than 50 µm, which were deposited at the bottom of the cell. Plasma-chemical treatment leads to rapid degradation of the Acid Violet 7 molecule. Intensive discoloration of the dye solution occurs within the first 5–7 min. Exposure for 20 min resulted in an 8.4-fold decrease in chemical oxygen demand (COD).</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Carbon Micro- and Nanomaterials through Plasmochemical Treatment of Wastewater Contaminated with Acid Violet 7\",\"authors\":\"R. E. Klishchenko, I. V. Kornienko, V. V. Honcharuk\",\"doi\":\"10.3103/S1063455X24020097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The plasma-chemical decomposition of Acid Violet 7 dye and simultaneous production of carbon micro- and nanomaterials were investigated. For the purification of wastewater contaminated with the dye, we used a plasma electrochemical setup with modified electrodes. The experiments were conducted in a galvanostatic mode with current intensities of 45 and 80 A and voltages ranging from 21 to 24 V. Two types of carbon-containing degradation products were formed. One type comprised fine-dispersed hydrophobic material, which, due to its low specific weight, hydrophobicity, and inclusion of gas bubbles, floated and concentrated at the interface between the solution and air phases. This material predominantly consisted of particles ranging in size from 1 to 5 µm, with some particles in the order of hundreds of nanometers present as well. Another type consisted of hydrophilic particles larger than 50 µm, which were deposited at the bottom of the cell. Plasma-chemical treatment leads to rapid degradation of the Acid Violet 7 molecule. Intensive discoloration of the dye solution occurs within the first 5–7 min. Exposure for 20 min resulted in an 8.4-fold decrease in chemical oxygen demand (COD).</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X24020097\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24020097","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Preparation of Carbon Micro- and Nanomaterials through Plasmochemical Treatment of Wastewater Contaminated with Acid Violet 7
The plasma-chemical decomposition of Acid Violet 7 dye and simultaneous production of carbon micro- and nanomaterials were investigated. For the purification of wastewater contaminated with the dye, we used a plasma electrochemical setup with modified electrodes. The experiments were conducted in a galvanostatic mode with current intensities of 45 and 80 A and voltages ranging from 21 to 24 V. Two types of carbon-containing degradation products were formed. One type comprised fine-dispersed hydrophobic material, which, due to its low specific weight, hydrophobicity, and inclusion of gas bubbles, floated and concentrated at the interface between the solution and air phases. This material predominantly consisted of particles ranging in size from 1 to 5 µm, with some particles in the order of hundreds of nanometers present as well. Another type consisted of hydrophilic particles larger than 50 µm, which were deposited at the bottom of the cell. Plasma-chemical treatment leads to rapid degradation of the Acid Violet 7 molecule. Intensive discoloration of the dye solution occurs within the first 5–7 min. Exposure for 20 min resulted in an 8.4-fold decrease in chemical oxygen demand (COD).
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.