{"title":"MAP3F:利用可扩展的一维、二维和三维特征融合实现多代理寻路和避免碰撞的分散方法","authors":"Marzie Parooei, Mehdi Tale Masouleh, Ahmad Kalhor","doi":"10.1007/s11370-024-00537-2","DOIUrl":null,"url":null,"abstract":"<p>Path planning and collision avoidance are vital aspects of successful development and utilization of robots in complex and multi-agent environments. With the integration of robots into social settings, the significance of this issue becomes more apparent. This paper introduces a decentralized management approach based on deep reinforcement learning, where each agent learns independently based on its local observations. The proposed method employs a feature fusion technique which combines 1D, 2D, and 3D features. In order to streamline computation and optimize the training process, an established separation index method is utilized. This approach strategically selects a subset of the most informative features. The presented approach outperforms classical and learning-based methods in various environments with differing densities. Performance evaluation metrics include the interaction index, which indicates the percentage of collision-free scenarios, the reachability index, measuring the time for the slowest agent to reach its goal, the field of view index, demonstrating reduced computation time by narrowing the field of view without compromising interaction, and the scalability index, quantitatively measuring a system’s capability to efficiently handle increasing amounts of work or its ability to be enlarged to accommodate that growth. The performance of this method, compared to PRIMAL, ORCA, and ODRM* methods, has shown an increase of over 30% in situations where the environment is more complex and the number of agents is higher.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAP3F: a decentralized approach to multi-agent pathfinding and collision avoidance with scalable 1D, 2D, and 3D feature fusion\",\"authors\":\"Marzie Parooei, Mehdi Tale Masouleh, Ahmad Kalhor\",\"doi\":\"10.1007/s11370-024-00537-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Path planning and collision avoidance are vital aspects of successful development and utilization of robots in complex and multi-agent environments. With the integration of robots into social settings, the significance of this issue becomes more apparent. This paper introduces a decentralized management approach based on deep reinforcement learning, where each agent learns independently based on its local observations. The proposed method employs a feature fusion technique which combines 1D, 2D, and 3D features. In order to streamline computation and optimize the training process, an established separation index method is utilized. This approach strategically selects a subset of the most informative features. The presented approach outperforms classical and learning-based methods in various environments with differing densities. Performance evaluation metrics include the interaction index, which indicates the percentage of collision-free scenarios, the reachability index, measuring the time for the slowest agent to reach its goal, the field of view index, demonstrating reduced computation time by narrowing the field of view without compromising interaction, and the scalability index, quantitatively measuring a system’s capability to efficiently handle increasing amounts of work or its ability to be enlarged to accommodate that growth. The performance of this method, compared to PRIMAL, ORCA, and ODRM* methods, has shown an increase of over 30% in situations where the environment is more complex and the number of agents is higher.</p>\",\"PeriodicalId\":48813,\"journal\":{\"name\":\"Intelligent Service Robotics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Service Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11370-024-00537-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-024-00537-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
MAP3F: a decentralized approach to multi-agent pathfinding and collision avoidance with scalable 1D, 2D, and 3D feature fusion
Path planning and collision avoidance are vital aspects of successful development and utilization of robots in complex and multi-agent environments. With the integration of robots into social settings, the significance of this issue becomes more apparent. This paper introduces a decentralized management approach based on deep reinforcement learning, where each agent learns independently based on its local observations. The proposed method employs a feature fusion technique which combines 1D, 2D, and 3D features. In order to streamline computation and optimize the training process, an established separation index method is utilized. This approach strategically selects a subset of the most informative features. The presented approach outperforms classical and learning-based methods in various environments with differing densities. Performance evaluation metrics include the interaction index, which indicates the percentage of collision-free scenarios, the reachability index, measuring the time for the slowest agent to reach its goal, the field of view index, demonstrating reduced computation time by narrowing the field of view without compromising interaction, and the scalability index, quantitatively measuring a system’s capability to efficiently handle increasing amounts of work or its ability to be enlarged to accommodate that growth. The performance of this method, compared to PRIMAL, ORCA, and ODRM* methods, has shown an increase of over 30% in situations where the environment is more complex and the number of agents is higher.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).