揭示拟南芥的砷耐受性:CPK23 和 PHT1;1 联盟

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-21 DOI:10.1007/s13562-024-00885-1
Jawahar Singh, Vishnu Mishra, Vishal Varshney
{"title":"揭示拟南芥的砷耐受性:CPK23 和 PHT1;1 联盟","authors":"Jawahar Singh, Vishnu Mishra, Vishal Varshney","doi":"10.1007/s13562-024-00885-1","DOIUrl":null,"url":null,"abstract":"<p>Arsenate As(V), characterized as a metalloid with heavy metal properties, is prevalent in various environments. The consumption of food derived from plants contaminated with arsenate contributes significantly to human exposure to arsenic, posing potential health risks. However, the mechanisms governing plant responses to arsenate stress and the regulation of relevant transporter functions remain inadequately understood. Recently, Wang and co-workers, identified a calcium-dependent protein kinase, specifically CALCIUM-DEPENDENT PROTEIN KINASE 23 (CPK23), which shows interaction with the plasma membrane As(V)/Pi transporter PHOSPHATE TRANSPORTER 1;1 (PHT1;1) to channelize the Ca<sup>2+</sup> signal in <i>Arabidopsis</i> roots under As(V) stress. The authors observed that <i>cpk23</i> mutants showed increased sensitivity, whereas the overexpression of <i>CPK23</i> resulted in enhanced tolerance under As(V) stress conferring role in As stress. Moreover, it has been demonstrated that CPK23 phosphorylates PHT1.1 at the Ser<sup>514</sup> (S<sup>514</sup>) site is crucial for its function and proper localization under As(V) stress. Thus, this commentary offers valuable insights into the induction of a notable Ca<sup>2+</sup> signal in <i>Arabidopsis</i> roots under As(V) stress that could guide crop bioengineering efforts aimed at addressing arsenate pollution in soil with targeted strategies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenic tolerance unveiled in Arabidopsis: CPK23 and PHT1;1 alliance\",\"authors\":\"Jawahar Singh, Vishnu Mishra, Vishal Varshney\",\"doi\":\"10.1007/s13562-024-00885-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Arsenate As(V), characterized as a metalloid with heavy metal properties, is prevalent in various environments. The consumption of food derived from plants contaminated with arsenate contributes significantly to human exposure to arsenic, posing potential health risks. However, the mechanisms governing plant responses to arsenate stress and the regulation of relevant transporter functions remain inadequately understood. Recently, Wang and co-workers, identified a calcium-dependent protein kinase, specifically CALCIUM-DEPENDENT PROTEIN KINASE 23 (CPK23), which shows interaction with the plasma membrane As(V)/Pi transporter PHOSPHATE TRANSPORTER 1;1 (PHT1;1) to channelize the Ca<sup>2+</sup> signal in <i>Arabidopsis</i> roots under As(V) stress. The authors observed that <i>cpk23</i> mutants showed increased sensitivity, whereas the overexpression of <i>CPK23</i> resulted in enhanced tolerance under As(V) stress conferring role in As stress. Moreover, it has been demonstrated that CPK23 phosphorylates PHT1.1 at the Ser<sup>514</sup> (S<sup>514</sup>) site is crucial for its function and proper localization under As(V) stress. Thus, this commentary offers valuable insights into the induction of a notable Ca<sup>2+</sup> signal in <i>Arabidopsis</i> roots under As(V) stress that could guide crop bioengineering efforts aimed at addressing arsenate pollution in soil with targeted strategies.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00885-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00885-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

砷酸盐 As(V) 是一种具有重金属特性的类金属,普遍存在于各种环境中。食用来自受砷酸盐污染的植物的食物大大增加了人类接触砷的机会,对健康构成潜在风险。然而,人们对植物对砷酸盐胁迫的反应机制以及相关转运体功能的调控仍缺乏足够的了解。最近,Wang 和合作者发现了一种钙依赖性蛋白激酶,特别是钙独立蛋白激酶 23(CPK23),它与质膜 As(V)/Pi 转运体 PHOSPHATE TRANSPORTER 1;1 (PHT1;1) 相互作用,在拟南芥根中引导 As(V) 胁迫下的 Ca2+ 信号。作者观察到,cpk23 突变体对砷胁迫的敏感性增加,而过表达 CPK23 则增强了对砷胁迫的耐受性。此外,研究还证明 CPK23 在 Ser514(S514)位点磷酸化 PHT1.1,这对其在 As(V)胁迫下的功能和正确定位至关重要。因此,这篇评论对拟南芥根系在As(V)胁迫下诱导显著的Ca2+信号提供了有价值的见解,可以指导作物生物工程工作,以有针对性的策略解决土壤中的砷酸盐污染问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arsenic tolerance unveiled in Arabidopsis: CPK23 and PHT1;1 alliance

Arsenate As(V), characterized as a metalloid with heavy metal properties, is prevalent in various environments. The consumption of food derived from plants contaminated with arsenate contributes significantly to human exposure to arsenic, posing potential health risks. However, the mechanisms governing plant responses to arsenate stress and the regulation of relevant transporter functions remain inadequately understood. Recently, Wang and co-workers, identified a calcium-dependent protein kinase, specifically CALCIUM-DEPENDENT PROTEIN KINASE 23 (CPK23), which shows interaction with the plasma membrane As(V)/Pi transporter PHOSPHATE TRANSPORTER 1;1 (PHT1;1) to channelize the Ca2+ signal in Arabidopsis roots under As(V) stress. The authors observed that cpk23 mutants showed increased sensitivity, whereas the overexpression of CPK23 resulted in enhanced tolerance under As(V) stress conferring role in As stress. Moreover, it has been demonstrated that CPK23 phosphorylates PHT1.1 at the Ser514 (S514) site is crucial for its function and proper localization under As(V) stress. Thus, this commentary offers valuable insights into the induction of a notable Ca2+ signal in Arabidopsis roots under As(V) stress that could guide crop bioengineering efforts aimed at addressing arsenate pollution in soil with targeted strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1