O. G. Kryukova, A. A. Nevmyvaka, A. A. Akulinkin, T. V. Tatarinova
{"title":"在氮气中燃烧硅铁-天然矿物-铝混合物时合成氮氧化物复合材料","authors":"O. G. Kryukova, A. A. Nevmyvaka, A. A. Akulinkin, T. V. Tatarinova","doi":"10.1134/s0010508224010088","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Targeted synthesis of oxynitride composites is implemented by means of organizing coupled processes. Interaction of ferrosilicon with nitrogen during combustion is considered as the main (inducing) process. The phase composition of the products of the coupled processes is determined by the chemical and phase compositions of the components added to ferrosilicon before performing self-propagating high-temperature synthesis. The influence of the basic products of the synthesis on the burning rate, fraction of nitrogen, phase composition, and morphology of synthesis products is considered. Chemical stages of ferrosilicon interaction with additives of natural minerals (zircon, ilmenite, and shungite) and aluminum in a nitrogen medium are demonstrated. The phase composition is determined by chemical transformations in a combustion wave. It is found that addition of aluminum leads to reduction or elimination of the Si<sub>2</sub>N<sub>2</sub>O phase in synthesis products with an increase in the aluminum fraction and obtaining composites based on the Si<sub>3</sub>N<sub>4</sub> (SiAlON) solid solution. The microstructure of combustion products is presented by aggregates (5–10 <span>\\(\\mu\\)</span>m) composed of small faceted crystals, shapeless structures, and crystal flakes. Oxynitride composites with an open porosity value of 51.0–68.8% are obtained.</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Oxynitride Composites during Combustion of a Ferrosilicon–Natural Mineral–Aluminum Mixture in Nitrogen\",\"authors\":\"O. G. Kryukova, A. A. Nevmyvaka, A. A. Akulinkin, T. V. Tatarinova\",\"doi\":\"10.1134/s0010508224010088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Targeted synthesis of oxynitride composites is implemented by means of organizing coupled processes. Interaction of ferrosilicon with nitrogen during combustion is considered as the main (inducing) process. The phase composition of the products of the coupled processes is determined by the chemical and phase compositions of the components added to ferrosilicon before performing self-propagating high-temperature synthesis. The influence of the basic products of the synthesis on the burning rate, fraction of nitrogen, phase composition, and morphology of synthesis products is considered. Chemical stages of ferrosilicon interaction with additives of natural minerals (zircon, ilmenite, and shungite) and aluminum in a nitrogen medium are demonstrated. The phase composition is determined by chemical transformations in a combustion wave. It is found that addition of aluminum leads to reduction or elimination of the Si<sub>2</sub>N<sub>2</sub>O phase in synthesis products with an increase in the aluminum fraction and obtaining composites based on the Si<sub>3</sub>N<sub>4</sub> (SiAlON) solid solution. The microstructure of combustion products is presented by aggregates (5–10 <span>\\\\(\\\\mu\\\\)</span>m) composed of small faceted crystals, shapeless structures, and crystal flakes. Oxynitride composites with an open porosity value of 51.0–68.8% are obtained.</p>\",\"PeriodicalId\":10509,\"journal\":{\"name\":\"Combustion, Explosion, and Shock Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion, Explosion, and Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0010508224010088\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0010508224010088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Synthesis of Oxynitride Composites during Combustion of a Ferrosilicon–Natural Mineral–Aluminum Mixture in Nitrogen
Abstract
Targeted synthesis of oxynitride composites is implemented by means of organizing coupled processes. Interaction of ferrosilicon with nitrogen during combustion is considered as the main (inducing) process. The phase composition of the products of the coupled processes is determined by the chemical and phase compositions of the components added to ferrosilicon before performing self-propagating high-temperature synthesis. The influence of the basic products of the synthesis on the burning rate, fraction of nitrogen, phase composition, and morphology of synthesis products is considered. Chemical stages of ferrosilicon interaction with additives of natural minerals (zircon, ilmenite, and shungite) and aluminum in a nitrogen medium are demonstrated. The phase composition is determined by chemical transformations in a combustion wave. It is found that addition of aluminum leads to reduction or elimination of the Si2N2O phase in synthesis products with an increase in the aluminum fraction and obtaining composites based on the Si3N4 (SiAlON) solid solution. The microstructure of combustion products is presented by aggregates (5–10 \(\mu\)m) composed of small faceted crystals, shapeless structures, and crystal flakes. Oxynitride composites with an open porosity value of 51.0–68.8% are obtained.
期刊介绍:
Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.