{"title":"氢气-空气混合物中高速飞行弹丸斜向引爆的数值模拟","authors":"I. A. Bedarev, A. A. Syrovaten, V. M. Temerbekov","doi":"10.1134/s0010508224010039","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A mathematical method is developed for solving the problem of detonation initiation in a hydrogen–air mixture by a small-diameter sphere flying with a velocity greater than the Chapman–Jouguet detonation velocity. The mathematical model verification is performed against experimental data on the detonation cell size in hydrogen–oxygen and hydrogen–air mixtures. Depending on the pressure in the mixture, which is varied from 100 to 250 kPa, three types of oblique detonation waves are obtained: (1) stabilized oblique detonation wave at 250 kPa; (2) stabilized oblique detonation wave of the “straw hat\" type at 200 kPa; (3) periodic regime with an attenuated oblique detonation wave, which was not observed in previous experiments, at 125 kPa. At 100 kPa, a regime of shock-initiated combustion is observed. Based on an analytical dependence, the energy of detonation initiation by a high-velocity projectile is estimated, and the analytical and numerical data are found to be in good agreement.</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":"16 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Oblique Detonation Initiation by a High-Velocity Projectile Flying in a Hydrogen–Air Mixture\",\"authors\":\"I. A. Bedarev, A. A. Syrovaten, V. M. Temerbekov\",\"doi\":\"10.1134/s0010508224010039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A mathematical method is developed for solving the problem of detonation initiation in a hydrogen–air mixture by a small-diameter sphere flying with a velocity greater than the Chapman–Jouguet detonation velocity. The mathematical model verification is performed against experimental data on the detonation cell size in hydrogen–oxygen and hydrogen–air mixtures. Depending on the pressure in the mixture, which is varied from 100 to 250 kPa, three types of oblique detonation waves are obtained: (1) stabilized oblique detonation wave at 250 kPa; (2) stabilized oblique detonation wave of the “straw hat\\\" type at 200 kPa; (3) periodic regime with an attenuated oblique detonation wave, which was not observed in previous experiments, at 125 kPa. At 100 kPa, a regime of shock-initiated combustion is observed. Based on an analytical dependence, the energy of detonation initiation by a high-velocity projectile is estimated, and the analytical and numerical data are found to be in good agreement.</p>\",\"PeriodicalId\":10509,\"journal\":{\"name\":\"Combustion, Explosion, and Shock Waves\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion, Explosion, and Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0010508224010039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0010508224010039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical Simulation of Oblique Detonation Initiation by a High-Velocity Projectile Flying in a Hydrogen–Air Mixture
Abstract
A mathematical method is developed for solving the problem of detonation initiation in a hydrogen–air mixture by a small-diameter sphere flying with a velocity greater than the Chapman–Jouguet detonation velocity. The mathematical model verification is performed against experimental data on the detonation cell size in hydrogen–oxygen and hydrogen–air mixtures. Depending on the pressure in the mixture, which is varied from 100 to 250 kPa, three types of oblique detonation waves are obtained: (1) stabilized oblique detonation wave at 250 kPa; (2) stabilized oblique detonation wave of the “straw hat" type at 200 kPa; (3) periodic regime with an attenuated oblique detonation wave, which was not observed in previous experiments, at 125 kPa. At 100 kPa, a regime of shock-initiated combustion is observed. Based on an analytical dependence, the energy of detonation initiation by a high-velocity projectile is estimated, and the analytical and numerical data are found to be in good agreement.
期刊介绍:
Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.