用于夜间图像增强质量评估的基准数据集和配对排序法

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-04-22 DOI:10.1109/TMM.2024.3391907
Xuejin Wang;Leilei Huang;Hangwei Chen;Qiuping Jiang;Shaowei Weng;Feng Shao
{"title":"用于夜间图像增强质量评估的基准数据集和配对排序法","authors":"Xuejin Wang;Leilei Huang;Hangwei Chen;Qiuping Jiang;Shaowei Weng;Feng Shao","doi":"10.1109/TMM.2024.3391907","DOIUrl":null,"url":null,"abstract":"Night-time image enhancement (NIE) aims at boosting the intensity of low-light regions while suppressing noises or light effects in night-time images, and numerous efforts have been made for this task. However, few explorations focus on the quality evaluation issue of enhanced night-time images (ENTIs), and how to fairly compare the performance of different NIE algorithms remains a challenging problem. In this paper, we firstly construct a new Real-world Night-Time Image Enhancement Quality Assessment (i.e., RNTIEQA) dataset that includes two typical types of night-time scenes (i.e., extremely low light and uneven light scenes), and carry out human subjective studies to compare the quality of ENTIs obtained by a set of representative NIE algorithms. Afterwards, a new objective ranking method that comprehensively considering image intrinsic and impairment attributes is proposed for automatically predicting the quality of ENTIs. Experimental results on our RNTIEQA dataset demonstrate that the proposed method outperforms the off-the-shelf competitors. Our dataset and code will be released at \n<uri>https://github.com/Leilei-Huang-work/RNTIEQA-dataset</uri>\n.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9436-9449"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmark Dataset and Pair-Wise Ranking Method for Quality Evaluation of Night-Time Image Enhancement\",\"authors\":\"Xuejin Wang;Leilei Huang;Hangwei Chen;Qiuping Jiang;Shaowei Weng;Feng Shao\",\"doi\":\"10.1109/TMM.2024.3391907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Night-time image enhancement (NIE) aims at boosting the intensity of low-light regions while suppressing noises or light effects in night-time images, and numerous efforts have been made for this task. However, few explorations focus on the quality evaluation issue of enhanced night-time images (ENTIs), and how to fairly compare the performance of different NIE algorithms remains a challenging problem. In this paper, we firstly construct a new Real-world Night-Time Image Enhancement Quality Assessment (i.e., RNTIEQA) dataset that includes two typical types of night-time scenes (i.e., extremely low light and uneven light scenes), and carry out human subjective studies to compare the quality of ENTIs obtained by a set of representative NIE algorithms. Afterwards, a new objective ranking method that comprehensively considering image intrinsic and impairment attributes is proposed for automatically predicting the quality of ENTIs. Experimental results on our RNTIEQA dataset demonstrate that the proposed method outperforms the off-the-shelf competitors. Our dataset and code will be released at \\n<uri>https://github.com/Leilei-Huang-work/RNTIEQA-dataset</uri>\\n.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"9436-9449\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10506553/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10506553/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

夜间图像增强(NIE)旨在增强低照度区域的强度,同时抑制夜间图像中的噪声或光效应。然而,很少有人关注增强夜景图像(ENTI)的质量评估问题,如何公平地比较不同 NIE 算法的性能仍然是一个具有挑战性的问题。本文首先构建了一个新的真实世界夜间图像增强质量评估(即 RNTIEQA)数据集,其中包括两种典型的夜间场景(即光线极弱和光线不均的场景),并进行了人类主观研究,以比较一组具有代表性的 NIE 算法所获得的 ENTI 的质量。随后,提出了一种综合考虑图像内在属性和损伤属性的新的客观排名方法,用于自动预测 ENTI 的质量。在我们的 RNTIEQA 数据集上的实验结果表明,所提出的方法优于现成的竞争对手。我们的数据集和代码将在 https://github.com/Leilei-Huang-work/RNTIEQA-dataset 上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmark Dataset and Pair-Wise Ranking Method for Quality Evaluation of Night-Time Image Enhancement
Night-time image enhancement (NIE) aims at boosting the intensity of low-light regions while suppressing noises or light effects in night-time images, and numerous efforts have been made for this task. However, few explorations focus on the quality evaluation issue of enhanced night-time images (ENTIs), and how to fairly compare the performance of different NIE algorithms remains a challenging problem. In this paper, we firstly construct a new Real-world Night-Time Image Enhancement Quality Assessment (i.e., RNTIEQA) dataset that includes two typical types of night-time scenes (i.e., extremely low light and uneven light scenes), and carry out human subjective studies to compare the quality of ENTIs obtained by a set of representative NIE algorithms. Afterwards, a new objective ranking method that comprehensively considering image intrinsic and impairment attributes is proposed for automatically predicting the quality of ENTIs. Experimental results on our RNTIEQA dataset demonstrate that the proposed method outperforms the off-the-shelf competitors. Our dataset and code will be released at https://github.com/Leilei-Huang-work/RNTIEQA-dataset .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-identification Collaborative License Plate Recognition via Association Enhancement Network With Auxiliary Learning and a Unified Benchmark VLDadaptor: Domain Adaptive Object Detection with Vision-Language Model Distillation Camera-Incremental Object Re-Identification With Identity Knowledge Evolution Dual-View Data Hallucination With Semantic Relation Guidance for Few-Shot Image Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1