利用视差感知遮蔽进行立体图像超分辨率的自监督预训练

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Broadcasting Pub Date : 2024-04-22 DOI:10.1109/TBC.2024.3382960
Zhe Zhang;Jianjun Lei;Bo Peng;Jie Zhu;Qingming Huang
{"title":"利用视差感知遮蔽进行立体图像超分辨率的自监督预训练","authors":"Zhe Zhang;Jianjun Lei;Bo Peng;Jie Zhu;Qingming Huang","doi":"10.1109/TBC.2024.3382960","DOIUrl":null,"url":null,"abstract":"Most existing learning-based methods for stereoscopic image super-resolution rely on a great number of high-resolution stereoscopic images as labels. To alleviate the problem of data dependency, this paper proposes a self-supervised pretraining-based method for stereoscopic image super-resolution (SelfSSR). Specifically, to develop a self-supervised pretext task for stereoscopic images, a parallax-aware masking strategy (PAMS) is designed to adaptively mask matching areas of the left and right views. With PAMS, the network is encouraged to effectively predict missing information of input images. Besides, a cross-view Transformer module (CVTM) is presented to aggregate the intra-view and inter-view information simultaneously for stereoscopic image reconstruction. Meanwhile, the cross-attention map learned by CVTM is utilized to guide the masking process in PAMS. Comparative results on four datasets show that the proposed SelfSSR achieves state-of-the-art performance by using only 10% of labeled training data.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"482-491"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Supervised Pretraining for Stereoscopic Image Super-Resolution With Parallax-Aware Masking\",\"authors\":\"Zhe Zhang;Jianjun Lei;Bo Peng;Jie Zhu;Qingming Huang\",\"doi\":\"10.1109/TBC.2024.3382960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing learning-based methods for stereoscopic image super-resolution rely on a great number of high-resolution stereoscopic images as labels. To alleviate the problem of data dependency, this paper proposes a self-supervised pretraining-based method for stereoscopic image super-resolution (SelfSSR). Specifically, to develop a self-supervised pretext task for stereoscopic images, a parallax-aware masking strategy (PAMS) is designed to adaptively mask matching areas of the left and right views. With PAMS, the network is encouraged to effectively predict missing information of input images. Besides, a cross-view Transformer module (CVTM) is presented to aggregate the intra-view and inter-view information simultaneously for stereoscopic image reconstruction. Meanwhile, the cross-attention map learned by CVTM is utilized to guide the masking process in PAMS. Comparative results on four datasets show that the proposed SelfSSR achieves state-of-the-art performance by using only 10% of labeled training data.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 2\",\"pages\":\"482-491\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10506218/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10506218/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于学习的立体图像超分辨率方法大多依赖于大量的高分辨率立体图像作为标签。为了缓解数据依赖问题,本文提出了一种基于自监督预训练的立体图像超分辨率方法(SelfSSR)。具体来说,为了开发立体图像的自监督预训练任务,设计了一种视差感知遮蔽策略(PAMS)来自适应地遮蔽左右视图的匹配区域。有了 PAMS,网络就能有效预测输入图像的缺失信息。此外,还提出了跨视图变换器模块(CVTM),可同时聚合视图内和视图间的信息,用于立体图像重建。同时,在 PAMS 中利用 CVTM 学习到的交叉注意图来指导遮蔽过程。在四个数据集上的比较结果表明,所提出的 SelfSSR 只使用了 10% 的标注训练数据,就达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Supervised Pretraining for Stereoscopic Image Super-Resolution With Parallax-Aware Masking
Most existing learning-based methods for stereoscopic image super-resolution rely on a great number of high-resolution stereoscopic images as labels. To alleviate the problem of data dependency, this paper proposes a self-supervised pretraining-based method for stereoscopic image super-resolution (SelfSSR). Specifically, to develop a self-supervised pretext task for stereoscopic images, a parallax-aware masking strategy (PAMS) is designed to adaptively mask matching areas of the left and right views. With PAMS, the network is encouraged to effectively predict missing information of input images. Besides, a cross-view Transformer module (CVTM) is presented to aggregate the intra-view and inter-view information simultaneously for stereoscopic image reconstruction. Meanwhile, the cross-attention map learned by CVTM is utilized to guide the masking process in PAMS. Comparative results on four datasets show that the proposed SelfSSR achieves state-of-the-art performance by using only 10% of labeled training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
期刊最新文献
Front Cover Table of Contents Table of Contents IEEE Transactions on Broadcasting Information for Authors IEEE Transactions on Broadcasting Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1