基于 MI 的特征选择方法的 CUDA 加速

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-04-18 DOI:10.1016/j.jpdc.2024.104901
Bieito Beceiro , Jorge González-Domínguez , Laura Morán-Fernández , Verónica Bolón-Canedo , Juan Touriño
{"title":"基于 MI 的特征选择方法的 CUDA 加速","authors":"Bieito Beceiro ,&nbsp;Jorge González-Domínguez ,&nbsp;Laura Morán-Fernández ,&nbsp;Verónica Bolón-Canedo ,&nbsp;Juan Touriño","doi":"10.1016/j.jpdc.2024.104901","DOIUrl":null,"url":null,"abstract":"<div><p>Feature selection algorithms are necessary nowadays for machine learning as they are capable of removing irrelevant and redundant information to reduce the dimensionality of the data and improve the quality of subsequent analyses. The problem with current feature selection approaches is that they are computationally expensive when processing large datasets. This work presents parallel implementations for Nvidia GPUs of three highly-used feature selection methods based on the Mutual Information (MI) metric: mRMR, JMI and DISR. Publicly available code includes not only CUDA implementations of the general methods, but also an adaptation of them to work with low-precision fixed point in order to further increase their performance on GPUs. The experimental evaluation was carried out on two modern Nvidia GPUs (Turing T4 and Ampere A100) with highly satisfactory results, achieving speedups of up to 283x when compared to state-of-the-art C implementations.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"190 ","pages":"Article 104901"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0743731524000650/pdfft?md5=702120f16f21ee1ed938e87b7c2e0385&pid=1-s2.0-S0743731524000650-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CUDA acceleration of MI-based feature selection methods\",\"authors\":\"Bieito Beceiro ,&nbsp;Jorge González-Domínguez ,&nbsp;Laura Morán-Fernández ,&nbsp;Verónica Bolón-Canedo ,&nbsp;Juan Touriño\",\"doi\":\"10.1016/j.jpdc.2024.104901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature selection algorithms are necessary nowadays for machine learning as they are capable of removing irrelevant and redundant information to reduce the dimensionality of the data and improve the quality of subsequent analyses. The problem with current feature selection approaches is that they are computationally expensive when processing large datasets. This work presents parallel implementations for Nvidia GPUs of three highly-used feature selection methods based on the Mutual Information (MI) metric: mRMR, JMI and DISR. Publicly available code includes not only CUDA implementations of the general methods, but also an adaptation of them to work with low-precision fixed point in order to further increase their performance on GPUs. The experimental evaluation was carried out on two modern Nvidia GPUs (Turing T4 and Ampere A100) with highly satisfactory results, achieving speedups of up to 283x when compared to state-of-the-art C implementations.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"190 \",\"pages\":\"Article 104901\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000650/pdfft?md5=702120f16f21ee1ed938e87b7c2e0385&pid=1-s2.0-S0743731524000650-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000650\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000650","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

特征选择算法是当今机器学习所必需的,因为它们能够去除无关信息和冗余信息,从而降低数据维度,提高后续分析的质量。目前的特征选择方法存在的问题是,在处理大型数据集时计算成本高昂。这项工作介绍了基于互信息(MI)度量的三种常用特征选择方法在 Nvidia GPU 上的并行实现:mRMR、JMI 和 DISR。公开的代码不仅包括一般方法的 CUDA 实现,还包括将这些方法调整为使用低精度定点,以进一步提高它们在 GPU 上的性能。实验评估是在两个现代 Nvidia GPU(图灵 T4 和安培 A100)上进行的,结果非常令人满意,与最先进的 C 语言实现相比,速度提高了 283 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CUDA acceleration of MI-based feature selection methods

Feature selection algorithms are necessary nowadays for machine learning as they are capable of removing irrelevant and redundant information to reduce the dimensionality of the data and improve the quality of subsequent analyses. The problem with current feature selection approaches is that they are computationally expensive when processing large datasets. This work presents parallel implementations for Nvidia GPUs of three highly-used feature selection methods based on the Mutual Information (MI) metric: mRMR, JMI and DISR. Publicly available code includes not only CUDA implementations of the general methods, but also an adaptation of them to work with low-precision fixed point in order to further increase their performance on GPUs. The experimental evaluation was carried out on two modern Nvidia GPUs (Turing T4 and Ampere A100) with highly satisfactory results, achieving speedups of up to 283x when compared to state-of-the-art C implementations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
Content delivery network solutions for the CMS experiment: The evolution towards HL-LHC An efficient conference key agreement protocol suited for resource constrained devices Enabling semi-supervised learning in intrusion detection systems Fault-tolerance in biswapped multiprocessor interconnection networks Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1