VSI:营养素:结构与功能

IF 4.3 2区 生物学 Q2 CELL BIOLOGY Cell calcium Pub Date : 2024-04-17 DOI:10.1016/j.ceca.2024.102888
Karl Kunzelmann, Jiraporn Ousingsawat, Rainer Schreiber
{"title":"VSI:营养素:结构与功能","authors":"Karl Kunzelmann,&nbsp;Jiraporn Ousingsawat,&nbsp;Rainer Schreiber","doi":"10.1016/j.ceca.2024.102888","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca<sup>2+</sup>-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca<sup>2+</sup> signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"120 ","pages":"Article 102888"},"PeriodicalIF":4.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000460/pdfft?md5=f58aed71b2a266518534bd100bcaf091&pid=1-s2.0-S0143416024000460-main.pdf","citationCount":"0","resultStr":"{\"title\":\"VSI: The anoctamins: Structure and function\",\"authors\":\"Karl Kunzelmann,&nbsp;Jiraporn Ousingsawat,&nbsp;Rainer Schreiber\",\"doi\":\"10.1016/j.ceca.2024.102888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca<sup>2+</sup>-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca<sup>2+</sup> signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.</p></div>\",\"PeriodicalId\":9678,\"journal\":{\"name\":\"Cell calcium\",\"volume\":\"120 \",\"pages\":\"Article 102888\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000460/pdfft?md5=f58aed71b2a266518534bd100bcaf091&pid=1-s2.0-S0143416024000460-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell calcium\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000460\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000460","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们已经对质膜定位的鹅膏蕈素 1、2 和 6(TMEM16A、B、F)的结构和功能进行了详细的研究,但对这一令人兴奋的蛋白质家族的其他七个细胞内成员的了解却少得多。这可能是由于它们在细胞内膜隔室(如内质网(ER)或内体)中的可及性有限。然而,这些所谓的细胞内营养素也存在于质膜(PM)中,这就使人们对它们在细胞中的作用更加困惑。除 ANO8 外,可能所有细胞内抗外激素都是细胞内磷脂(PL)扰乱酶,允许在 Ca2+ 激活下在两片膜之间被动运输磷脂(如磷脂酰丝氨酸)。它们可能都能传导离子,这可能也是其生理功能的一部分。在这篇简短的综述中,我们总结了有关 ANO3、4、5、7、8、9 和 10(TMEM16C、D、E、G、H、J、K)生物功能的主要发现,这些发现正逐渐被人们所了解。细胞内Ca2+信号的区系化调节、ER与特定PM接触点的拴系以及细胞内囊泡贩运的控制似乎是细胞内anoctamins的部分功能,而功能缺失和异常表达则是导致各种疾病的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VSI: The anoctamins: Structure and function

Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca2+-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca2+ signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell calcium
Cell calcium 生物-细胞生物学
CiteScore
8.70
自引率
5.00%
发文量
115
审稿时长
35 days
期刊介绍: Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include: Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling Influence of calcium regulation in affecting health and disease outcomes
期刊最新文献
Commentary on: Li et al.; Ca2+ transients on the T cell surface trigger rapid integrin activation in a timescale of seconds. Nature Communications (2024) Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary Calcium signals as regulators of ferroptosis in cancer GPCR signalling: Yet another variant route in a highly complex road map Does a transmembrane sodium gradient control membrane potential in mammalian mitochondria?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1