Bo Li;Haowei Quan;Jiawei Wang;Pei Liu;Haipeng Cai;Yuan Miao;Yun Yang;Li Li
{"title":"通过嵌入项目图书馆知识图谱进行神经图书馆推荐","authors":"Bo Li;Haowei Quan;Jiawei Wang;Pei Liu;Haipeng Cai;Yuan Miao;Yun Yang;Li Li","doi":"10.1109/TSE.2024.3393504","DOIUrl":null,"url":null,"abstract":"The prosperity of software applications brings fierce market competition to developers. Employing third-party libraries (TPLs) to add new features to projects under development and to reduce the time to market has become a popular way in the community. However, given the tremendous TPLs ready for use, it is challenging for developers to effectively and efficiently identify the most suitable TPLs. To tackle this obstacle, we propose an innovative approach named PyRec to recommend potentially useful TPLs to developers for their projects. Taking Python project development as a use case, PyRec embeds Python projects, TPLs, contextual information, and relations between those entities into a knowledge graph. Then, it employs a graph neural network to capture useful information from the graph to make TPL recommendations. Different from existing approaches, PyRec can make full use of not only project-library interaction information but also contextual information to make more accurate TPL recommendations. Comprehensive evaluations are conducted based on 12,421 Python projects involving 963 TPLs, 9,675 extra entities, 121,474 library usage records, and 73,277 contextual records. Compared with five representative approaches, PyRec improves the recommendation performance significantly in all cases.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"50 6","pages":"1620-1638"},"PeriodicalIF":6.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Library Recommendation by Embedding Project-Library Knowledge Graph\",\"authors\":\"Bo Li;Haowei Quan;Jiawei Wang;Pei Liu;Haipeng Cai;Yuan Miao;Yun Yang;Li Li\",\"doi\":\"10.1109/TSE.2024.3393504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prosperity of software applications brings fierce market competition to developers. Employing third-party libraries (TPLs) to add new features to projects under development and to reduce the time to market has become a popular way in the community. However, given the tremendous TPLs ready for use, it is challenging for developers to effectively and efficiently identify the most suitable TPLs. To tackle this obstacle, we propose an innovative approach named PyRec to recommend potentially useful TPLs to developers for their projects. Taking Python project development as a use case, PyRec embeds Python projects, TPLs, contextual information, and relations between those entities into a knowledge graph. Then, it employs a graph neural network to capture useful information from the graph to make TPL recommendations. Different from existing approaches, PyRec can make full use of not only project-library interaction information but also contextual information to make more accurate TPL recommendations. Comprehensive evaluations are conducted based on 12,421 Python projects involving 963 TPLs, 9,675 extra entities, 121,474 library usage records, and 73,277 contextual records. Compared with five representative approaches, PyRec improves the recommendation performance significantly in all cases.\",\"PeriodicalId\":13324,\"journal\":{\"name\":\"IEEE Transactions on Software Engineering\",\"volume\":\"50 6\",\"pages\":\"1620-1638\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508261/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508261/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Neural Library Recommendation by Embedding Project-Library Knowledge Graph
The prosperity of software applications brings fierce market competition to developers. Employing third-party libraries (TPLs) to add new features to projects under development and to reduce the time to market has become a popular way in the community. However, given the tremendous TPLs ready for use, it is challenging for developers to effectively and efficiently identify the most suitable TPLs. To tackle this obstacle, we propose an innovative approach named PyRec to recommend potentially useful TPLs to developers for their projects. Taking Python project development as a use case, PyRec embeds Python projects, TPLs, contextual information, and relations between those entities into a knowledge graph. Then, it employs a graph neural network to capture useful information from the graph to make TPL recommendations. Different from existing approaches, PyRec can make full use of not only project-library interaction information but also contextual information to make more accurate TPL recommendations. Comprehensive evaluations are conducted based on 12,421 Python projects involving 963 TPLs, 9,675 extra entities, 121,474 library usage records, and 73,277 contextual records. Compared with five representative approaches, PyRec improves the recommendation performance significantly in all cases.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.