{"title":"对弗里德曼和奥尔特加等转换法进行修改,以评估活化能与转换率和温度的关系","authors":"Alireza Aghili , Amir Hossein Shabani","doi":"10.1016/j.tca.2024.179748","DOIUrl":null,"url":null,"abstract":"<div><p>The Friedman and Ortega isoconversional methods typically apply linear regression to the isoconversional kinetic data for calculation of activation energy solely as a function of extent of conversion. However, in complex reactions, activation energy depends on both conversion and temperature. Our modification involves quadratic curve fitting instead of linear regression, resulting in the determination of activation energy as a function of conversion and temperature. The new technique enables the calculation of the temperature dependence of activation energy for different heating rates, making it a valuable addition to isoconversional analysis. The conventional and modified approaches were utilized on the isoconversional kinetic data concerning polyethylene thermal degradation. The results provided a more detailed representation of the variations in activation energy when nonlinear regression was used.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modification to the Friedman and Ortega isoconversional methods for evaluation of the activation energy as a function of conversion and temperature\",\"authors\":\"Alireza Aghili , Amir Hossein Shabani\",\"doi\":\"10.1016/j.tca.2024.179748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Friedman and Ortega isoconversional methods typically apply linear regression to the isoconversional kinetic data for calculation of activation energy solely as a function of extent of conversion. However, in complex reactions, activation energy depends on both conversion and temperature. Our modification involves quadratic curve fitting instead of linear regression, resulting in the determination of activation energy as a function of conversion and temperature. The new technique enables the calculation of the temperature dependence of activation energy for different heating rates, making it a valuable addition to isoconversional analysis. The conventional and modified approaches were utilized on the isoconversional kinetic data concerning polyethylene thermal degradation. The results provided a more detailed representation of the variations in activation energy when nonlinear regression was used.</p></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004060312400087X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004060312400087X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A modification to the Friedman and Ortega isoconversional methods for evaluation of the activation energy as a function of conversion and temperature
The Friedman and Ortega isoconversional methods typically apply linear regression to the isoconversional kinetic data for calculation of activation energy solely as a function of extent of conversion. However, in complex reactions, activation energy depends on both conversion and temperature. Our modification involves quadratic curve fitting instead of linear regression, resulting in the determination of activation energy as a function of conversion and temperature. The new technique enables the calculation of the temperature dependence of activation energy for different heating rates, making it a valuable addition to isoconversional analysis. The conventional and modified approaches were utilized on the isoconversional kinetic data concerning polyethylene thermal degradation. The results provided a more detailed representation of the variations in activation energy when nonlinear regression was used.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes