Rui Sun , Meng-Yu Tang , Dan Yang , Yan-Yi Zhang , Yi-Heng Xu , Yong Qiao , Bin Yu , Shu-Xia Cao , Hao Wang , Hui-Qian Huang , Hong Zhang , Xiao-Ming Li , Hong Lian
{"title":"内侧前额叶皮层中的 C3aR 通过谷氨酸能神经元兴奋性调节对 LPS 诱导的抑郁样行为的易感性","authors":"Rui Sun , Meng-Yu Tang , Dan Yang , Yan-Yi Zhang , Yi-Heng Xu , Yong Qiao , Bin Yu , Shu-Xia Cao , Hao Wang , Hui-Qian Huang , Hong Zhang , Xiao-Ming Li , Hong Lian","doi":"10.1016/j.pneurobio.2024.102614","DOIUrl":null,"url":null,"abstract":"<div><p>Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFC<sup>Glu</sup>) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFC<sup>Glu</sup> neurons in LPS-treated WT mice, C3aR-null mPFC<sup>Glu</sup> neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFC<sup>Glu</sup> neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFC<sup>Glu</sup> neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102614"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C3aR in the medial prefrontal cortex modulates the susceptibility to LPS-induced depressive-like behaviors through glutamatergic neuronal excitability\",\"authors\":\"Rui Sun , Meng-Yu Tang , Dan Yang , Yan-Yi Zhang , Yi-Heng Xu , Yong Qiao , Bin Yu , Shu-Xia Cao , Hao Wang , Hui-Qian Huang , Hong Zhang , Xiao-Ming Li , Hong Lian\",\"doi\":\"10.1016/j.pneurobio.2024.102614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFC<sup>Glu</sup>) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFC<sup>Glu</sup> neurons in LPS-treated WT mice, C3aR-null mPFC<sup>Glu</sup> neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFC<sup>Glu</sup> neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFC<sup>Glu</sup> neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.</p></div>\",\"PeriodicalId\":20851,\"journal\":{\"name\":\"Progress in Neurobiology\",\"volume\":\"236 \",\"pages\":\"Article 102614\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301008224000509\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224000509","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
C3aR in the medial prefrontal cortex modulates the susceptibility to LPS-induced depressive-like behaviors through glutamatergic neuronal excitability
Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.