Ying He , Xiaoyan Li , Yueying Li , Dan Kuai , Huiying Zhang , Yingmei Wang , Wenyan Tian
{"title":"脱氢表雄酮与高脂饮食治疗诱导大鼠多囊卵巢综合征模型","authors":"Ying He , Xiaoyan Li , Yueying Li , Dan Kuai , Huiying Zhang , Yingmei Wang , Wenyan Tian","doi":"10.1016/j.steroids.2024.109424","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>This study aimed to evaluate the effects of dehydroepiandrosterone (DHEA) and DHEA combined with a high-fat diet (HFD) treatment of reproductive and endocrine metabolism in rats and then identify an ideal model of polycystic ovary syndrome (PCOS).</p></div><div><h3>Methods</h3><p>Three-week-old female Sprague–Dawley rats were injected subcutaneously with DHEA or oil, fed with or without a HFD, for 21 days, during which body weight, feed intake, and estrous cycle monitoring were carried out. Fasting blood glucose was measured, and serum fasting insulin, testosterone, dihydrotestosterone (DHT), estradiol, progesterone, luteinizing hormone (LH), anti-Müllerian hormone (AMH), and follicle-stimulating hormone (FSH) were estimated by ELISA. Serum total cholesterol (TC), total triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured by colorimetric assay. Whereas, histologic changes in rat ovaries were evaluated by H&E staining. Ovarian steroid hormone synthases and their protein levels (StAR, 3β-HSD2, 17β-HSD1, CYP11A1, CYP17A1, and CYP19A1) were examined by Western blotting.</p></div><div><h3>Results</h3><p>Both DHEA and DHEA + HFD-treated rats lost a regular estrous cycle; had polycystic ovarian changes, significantly higher serum fasting insulin and testosterone levels; and increased ovarian StAR, 3β-HSD2, and CYP11A1 protein levels. Additionally, rats in the DHEA + HFD-treated group were obese; had elevated fasting blood glucose, TG, DHT, AMH levels and LH:FSH ratios; increased ovarian 17β-HSD1 protein levels.</p></div><div><h3>Conclusion</h3><p>DHEA combined with HFD treatment is more effective at inducing PCOS than DHEA alone. The reproductive and endocrine metabolic aspects of this method are more consistent with the clinical characteristics of PCOS patients.</p></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":"206 ","pages":"Article 109424"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039128X2400062X/pdfft?md5=d8522dfb4e5ee3c074838c24b6be5c78&pid=1-s2.0-S0039128X2400062X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dehydroepiandrosterone with a high-fat diet treatment at inducing polycystic ovary syndrome in rat model\",\"authors\":\"Ying He , Xiaoyan Li , Yueying Li , Dan Kuai , Huiying Zhang , Yingmei Wang , Wenyan Tian\",\"doi\":\"10.1016/j.steroids.2024.109424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>This study aimed to evaluate the effects of dehydroepiandrosterone (DHEA) and DHEA combined with a high-fat diet (HFD) treatment of reproductive and endocrine metabolism in rats and then identify an ideal model of polycystic ovary syndrome (PCOS).</p></div><div><h3>Methods</h3><p>Three-week-old female Sprague–Dawley rats were injected subcutaneously with DHEA or oil, fed with or without a HFD, for 21 days, during which body weight, feed intake, and estrous cycle monitoring were carried out. Fasting blood glucose was measured, and serum fasting insulin, testosterone, dihydrotestosterone (DHT), estradiol, progesterone, luteinizing hormone (LH), anti-Müllerian hormone (AMH), and follicle-stimulating hormone (FSH) were estimated by ELISA. Serum total cholesterol (TC), total triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured by colorimetric assay. Whereas, histologic changes in rat ovaries were evaluated by H&E staining. Ovarian steroid hormone synthases and their protein levels (StAR, 3β-HSD2, 17β-HSD1, CYP11A1, CYP17A1, and CYP19A1) were examined by Western blotting.</p></div><div><h3>Results</h3><p>Both DHEA and DHEA + HFD-treated rats lost a regular estrous cycle; had polycystic ovarian changes, significantly higher serum fasting insulin and testosterone levels; and increased ovarian StAR, 3β-HSD2, and CYP11A1 protein levels. Additionally, rats in the DHEA + HFD-treated group were obese; had elevated fasting blood glucose, TG, DHT, AMH levels and LH:FSH ratios; increased ovarian 17β-HSD1 protein levels.</p></div><div><h3>Conclusion</h3><p>DHEA combined with HFD treatment is more effective at inducing PCOS than DHEA alone. The reproductive and endocrine metabolic aspects of this method are more consistent with the clinical characteristics of PCOS patients.</p></div>\",\"PeriodicalId\":21997,\"journal\":{\"name\":\"Steroids\",\"volume\":\"206 \",\"pages\":\"Article 109424\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0039128X2400062X/pdfft?md5=d8522dfb4e5ee3c074838c24b6be5c78&pid=1-s2.0-S0039128X2400062X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steroids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039128X2400062X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X2400062X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dehydroepiandrosterone with a high-fat diet treatment at inducing polycystic ovary syndrome in rat model
Objective
This study aimed to evaluate the effects of dehydroepiandrosterone (DHEA) and DHEA combined with a high-fat diet (HFD) treatment of reproductive and endocrine metabolism in rats and then identify an ideal model of polycystic ovary syndrome (PCOS).
Methods
Three-week-old female Sprague–Dawley rats were injected subcutaneously with DHEA or oil, fed with or without a HFD, for 21 days, during which body weight, feed intake, and estrous cycle monitoring were carried out. Fasting blood glucose was measured, and serum fasting insulin, testosterone, dihydrotestosterone (DHT), estradiol, progesterone, luteinizing hormone (LH), anti-Müllerian hormone (AMH), and follicle-stimulating hormone (FSH) were estimated by ELISA. Serum total cholesterol (TC), total triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured by colorimetric assay. Whereas, histologic changes in rat ovaries were evaluated by H&E staining. Ovarian steroid hormone synthases and their protein levels (StAR, 3β-HSD2, 17β-HSD1, CYP11A1, CYP17A1, and CYP19A1) were examined by Western blotting.
Results
Both DHEA and DHEA + HFD-treated rats lost a regular estrous cycle; had polycystic ovarian changes, significantly higher serum fasting insulin and testosterone levels; and increased ovarian StAR, 3β-HSD2, and CYP11A1 protein levels. Additionally, rats in the DHEA + HFD-treated group were obese; had elevated fasting blood glucose, TG, DHT, AMH levels and LH:FSH ratios; increased ovarian 17β-HSD1 protein levels.
Conclusion
DHEA combined with HFD treatment is more effective at inducing PCOS than DHEA alone. The reproductive and endocrine metabolic aspects of this method are more consistent with the clinical characteristics of PCOS patients.
期刊介绍:
STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.