二维阵列的双层离子阱设计

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-04-25 DOI:10.1088/2058-9565/ad3f43
Gavin N Nop, Jonathan D H Smith, Daniel Stick and Durga Paudyal
{"title":"二维阵列的双层离子阱设计","authors":"Gavin N Nop, Jonathan D H Smith, Daniel Stick and Durga Paudyal","doi":"10.1088/2058-9565/ad3f43","DOIUrl":null,"url":null,"abstract":"Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane to minimize the disturbance to the pseudopotential. However, this method introduces issues related to RF lead routing that can increase power dissipation and the likelihood of voltage breakdown. Here, we propose and simulate a novel two-layer junction design incorporating two perpendicularly rotoreflected (rotated, then reflected) linear ion traps. The traps are vertically separated, and create a trapping potential between their respective planes. The orthogonal orientation of the RF electrodes of each trap relative to the other provides perpendicular axes of confinement that can be used to realize transport in two dimensions. While this design introduces manufacturing and operating challenges, as now two separate structures have to be precisely positioned relative to each other in the vertical direction and optical access from the top is obscured, it obviates the need to route RF leads below the top surface of the trap and eliminates the pseudopotential bumps that occur in typical junctions. In this paper the stability of idealized ion transfer in the new configuration is demonstrated, both by solving the Mathieu equation analytically to identify the stable regions and by numerically modeling ion dynamics. Our novel junction layout has the potential to enhance the flexibility of microfabricated ion trap control to enable large-scale trapped-ion quantum computing.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilayer ion trap design for 2D arrays\",\"authors\":\"Gavin N Nop, Jonathan D H Smith, Daniel Stick and Durga Paudyal\",\"doi\":\"10.1088/2058-9565/ad3f43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane to minimize the disturbance to the pseudopotential. However, this method introduces issues related to RF lead routing that can increase power dissipation and the likelihood of voltage breakdown. Here, we propose and simulate a novel two-layer junction design incorporating two perpendicularly rotoreflected (rotated, then reflected) linear ion traps. The traps are vertically separated, and create a trapping potential between their respective planes. The orthogonal orientation of the RF electrodes of each trap relative to the other provides perpendicular axes of confinement that can be used to realize transport in two dimensions. While this design introduces manufacturing and operating challenges, as now two separate structures have to be precisely positioned relative to each other in the vertical direction and optical access from the top is obscured, it obviates the need to route RF leads below the top surface of the trap and eliminates the pseudopotential bumps that occur in typical junctions. In this paper the stability of idealized ion transfer in the new configuration is demonstrated, both by solving the Mathieu equation analytically to identify the stable regions and by numerically modeling ion dynamics. Our novel junction layout has the potential to enhance the flexibility of microfabricated ion trap control to enable large-scale trapped-ion quantum computing.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad3f43\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad3f43","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结点是支持二维离子阱阵列中量子比特运动和增强新兴阱离子量子计算机连接性的基本要素。在表面离子阱中,它们通常是通过在单个平面上塑造射频(RF)电极来实现的,以尽量减少对伪电势的干扰。然而,这种方法会带来与射频引线布线相关的问题,从而增加功率耗散和电压击穿的可能性。在这里,我们提出并模拟了一种新型双层结设计,其中包含两个垂直旋转反射(旋转,然后反射)线性离子阱。阱垂直分隔,并在各自平面之间产生阱电势。每个阱的射频电极相对于另一个阱的正交方向提供了垂直的约束轴,可用于实现二维传输。虽然这种设计带来了制造和操作上的挑战,因为现在两个独立的结构必须在垂直方向上精确地相对定位,而且从顶部进入的光学通道也会被遮挡,但它避免了在阱顶表面下方布线射频导线的需要,并消除了典型结中出现的伪电位凸起。本文通过分析求解马修方程来确定稳定区域,并对离子动态进行数值建模,证明了新配置中理想化离子转移的稳定性。我们的新型结布局有可能提高微加工离子阱控制的灵活性,从而实现大规模困离子量子计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bilayer ion trap design for 2D arrays
Junctions are fundamental elements that support qubit locomotion in two-dimensional ion trap arrays and enhance connectivity in emerging trapped-ion quantum computers. In surface ion traps they have typically been implemented by shaping radio frequency (RF) electrodes in a single plane to minimize the disturbance to the pseudopotential. However, this method introduces issues related to RF lead routing that can increase power dissipation and the likelihood of voltage breakdown. Here, we propose and simulate a novel two-layer junction design incorporating two perpendicularly rotoreflected (rotated, then reflected) linear ion traps. The traps are vertically separated, and create a trapping potential between their respective planes. The orthogonal orientation of the RF electrodes of each trap relative to the other provides perpendicular axes of confinement that can be used to realize transport in two dimensions. While this design introduces manufacturing and operating challenges, as now two separate structures have to be precisely positioned relative to each other in the vertical direction and optical access from the top is obscured, it obviates the need to route RF leads below the top surface of the trap and eliminates the pseudopotential bumps that occur in typical junctions. In this paper the stability of idealized ion transfer in the new configuration is demonstrated, both by solving the Mathieu equation analytically to identify the stable regions and by numerically modeling ion dynamics. Our novel junction layout has the potential to enhance the flexibility of microfabricated ion trap control to enable large-scale trapped-ion quantum computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
From architectures to applications: a review of neural quantum states OPA tomography of non-Gaussian states of light A linear photonic swap test circuit for quantum kernel estimation Practical twin-field quantum key distribution parameter optimization based on quantum annealing algorithm On the feasibility of detecting quantum delocalization effects on relativistic time dilation in optical clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1