微电网频率调节虚拟惯性控制的优化调整

IF 2.1 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Canadian Journal of Electrical and Computer Engineering Pub Date : 2024-04-10 DOI:10.1109/ICJECE.2024.3351152
Bashar Abbas Fadheel;Noor Izzri Abdul Wahab;Ali Jafer Mahdi;Mohd Amran Bin Mohd Radzi;Azura Binti Che Soh;Hussein Mohammed Ridha;Veerapandiyan Veerasamy
{"title":"微电网频率调节虚拟惯性控制的优化调整","authors":"Bashar Abbas Fadheel;Noor Izzri Abdul Wahab;Ali Jafer Mahdi;Mohd Amran Bin Mohd Radzi;Azura Binti Che Soh;Hussein Mohammed Ridha;Veerapandiyan Veerasamy","doi":"10.1109/ICJECE.2024.3351152","DOIUrl":null,"url":null,"abstract":"The integration of renewable energy sources in modern microgrid power systems has a significant impact on frequency stability due to reducing inertia and damping coefficient. This article employs a virtual inertia control (VIC) based on frequency deviation derivatives to emulate the system inertia and damping coefficient characteristics of traditional synchronous generators. Coordination between the global controller (load frequency control) and the VIC is implemented. The parameters of both the secondary and virtual control are tuned using a novel hybrid sparrow search algorithm with mountain gazelle optimizer algorithm. The simulation results demonstrate a substantial improvement in mitigating the low inertia of the power system when exposed to consecutive rapid load changes, utilizing the suggested algorithm on comparing with the hybrid sparrow search algorithm based on grey wolf optimizer.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"47 2","pages":"60-69"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Tuning of Virtual Inertia Control for Frequency Regulation of Microgrid\",\"authors\":\"Bashar Abbas Fadheel;Noor Izzri Abdul Wahab;Ali Jafer Mahdi;Mohd Amran Bin Mohd Radzi;Azura Binti Che Soh;Hussein Mohammed Ridha;Veerapandiyan Veerasamy\",\"doi\":\"10.1109/ICJECE.2024.3351152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of renewable energy sources in modern microgrid power systems has a significant impact on frequency stability due to reducing inertia and damping coefficient. This article employs a virtual inertia control (VIC) based on frequency deviation derivatives to emulate the system inertia and damping coefficient characteristics of traditional synchronous generators. Coordination between the global controller (load frequency control) and the VIC is implemented. The parameters of both the secondary and virtual control are tuned using a novel hybrid sparrow search algorithm with mountain gazelle optimizer algorithm. The simulation results demonstrate a substantial improvement in mitigating the low inertia of the power system when exposed to consecutive rapid load changes, utilizing the suggested algorithm on comparing with the hybrid sparrow search algorithm based on grey wolf optimizer.\",\"PeriodicalId\":100619,\"journal\":{\"name\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"volume\":\"47 2\",\"pages\":\"60-69\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Canadian Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10495166/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10495166/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在现代微电网电力系统中整合可再生能源会降低惯性和阻尼系数,从而对频率稳定性产生重大影响。本文采用基于频率偏差导数的虚拟惯性控制(VIC)来模拟传统同步发电机的系统惯性和阻尼系数特性。全局控制器(负载频率控制)与虚拟惯性控制之间实现了协调。二次控制和虚拟控制的参数均采用新型混合麻雀搜索算法和瞪羚优化算法进行调整。仿真结果表明,与基于灰狼优化器的混合麻雀搜索算法相比,所建议的算法在缓解电力系统在连续快速负荷变化时的低惯性方面有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Tuning of Virtual Inertia Control for Frequency Regulation of Microgrid
The integration of renewable energy sources in modern microgrid power systems has a significant impact on frequency stability due to reducing inertia and damping coefficient. This article employs a virtual inertia control (VIC) based on frequency deviation derivatives to emulate the system inertia and damping coefficient characteristics of traditional synchronous generators. Coordination between the global controller (load frequency control) and the VIC is implemented. The parameters of both the secondary and virtual control are tuned using a novel hybrid sparrow search algorithm with mountain gazelle optimizer algorithm. The simulation results demonstrate a substantial improvement in mitigating the low inertia of the power system when exposed to consecutive rapid load changes, utilizing the suggested algorithm on comparing with the hybrid sparrow search algorithm based on grey wolf optimizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Canadian Journal of Electrical and Computer Engineering Green Electricity Share Enhancement Through Rooftop Solar PV System on Institutional Sheds Enhanced Validation of Intelligent Control Algorithms in AC Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1