Ali Ahmad, Anderson X. W. Liew, Francesca Venturini, Athanasios Kalogeras, Alessandro Candiani, Giacomo di Benedetto, Segun Ajibola, Pedro Cartujo, Pablo Romero, Aspasia Lykoudi, Michelangelo Mastrorocco De Grandis, Christos Xouris, Riccardo Lo Bianco, Irawan Doddy, Isa Elegbede, Giuseppe Falvo D'Urso Labate, Luis F. García del Moral, Vanessa M. Martos
{"title":"人工智能可增强农业能力,促进全球粮食安全:发展中国家的挑战与前景","authors":"Ali Ahmad, Anderson X. W. Liew, Francesca Venturini, Athanasios Kalogeras, Alessandro Candiani, Giacomo di Benedetto, Segun Ajibola, Pedro Cartujo, Pablo Romero, Aspasia Lykoudi, Michelangelo Mastrorocco De Grandis, Christos Xouris, Riccardo Lo Bianco, Irawan Doddy, Isa Elegbede, Giuseppe Falvo D'Urso Labate, Luis F. García del Moral, Vanessa M. Martos","doi":"10.3389/frai.2024.1328530","DOIUrl":null,"url":null,"abstract":"Food and nutrition are a steadfast essential to all living organisms. With specific reference to humans, the sufficient and efficient supply of food is a challenge as the world population continues to grow. Artificial Intelligence (AI) could be identified as a plausible technology in this 5th industrial revolution in bringing us closer to achieving zero hunger by 2030—Goal 2 of the United Nations Sustainable Development Goals (UNSDG). This goal cannot be achieved unless the digital divide among developed and underdeveloped countries is addressed. Nevertheless, developing and underdeveloped regions fall behind in economic resources; however, they harbor untapped potential to effectively address the impending demands posed by the soaring world population. Therefore, this study explores the in-depth potential of AI in the agriculture sector for developing and under-developed countries. Similarly, it aims to emphasize the proven efficiency and spin-off applications of AI in the advancement of agriculture. Currently, AI is being utilized in various spheres of agriculture, including but not limited to crop surveillance, irrigation management, disease identification, fertilization practices, task automation, image manipulation, data processing, yield forecasting, supply chain optimization, implementation of decision support system (DSS), weed control, and the enhancement of resource utilization. Whereas AI supports food safety and security by ensuring higher crop yields that are acquired by harnessing the potential of multi-temporal remote sensing (RS) techniques to accurately discern diverse crop phenotypes, monitor land cover dynamics, assess variations in soil organic matter, predict soil moisture levels, conduct plant biomass modeling, and enable comprehensive crop monitoring. The present study identifies various challenges, including financial, infrastructure, experts, data availability, customization, regulatory framework, cultural norms and attitudes, access to market, and interdisciplinary collaboration, in the adoption of AI for developing nations with their subsequent remedies. The identification of challenges and opportunities in the implementation of AI could ignite further research and actions in these regions; thereby supporting sustainable development.","PeriodicalId":508738,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI can empower agriculture for global food security: challenges and prospects in developing nations\",\"authors\":\"Ali Ahmad, Anderson X. W. Liew, Francesca Venturini, Athanasios Kalogeras, Alessandro Candiani, Giacomo di Benedetto, Segun Ajibola, Pedro Cartujo, Pablo Romero, Aspasia Lykoudi, Michelangelo Mastrorocco De Grandis, Christos Xouris, Riccardo Lo Bianco, Irawan Doddy, Isa Elegbede, Giuseppe Falvo D'Urso Labate, Luis F. García del Moral, Vanessa M. Martos\",\"doi\":\"10.3389/frai.2024.1328530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food and nutrition are a steadfast essential to all living organisms. With specific reference to humans, the sufficient and efficient supply of food is a challenge as the world population continues to grow. Artificial Intelligence (AI) could be identified as a plausible technology in this 5th industrial revolution in bringing us closer to achieving zero hunger by 2030—Goal 2 of the United Nations Sustainable Development Goals (UNSDG). This goal cannot be achieved unless the digital divide among developed and underdeveloped countries is addressed. Nevertheless, developing and underdeveloped regions fall behind in economic resources; however, they harbor untapped potential to effectively address the impending demands posed by the soaring world population. Therefore, this study explores the in-depth potential of AI in the agriculture sector for developing and under-developed countries. Similarly, it aims to emphasize the proven efficiency and spin-off applications of AI in the advancement of agriculture. Currently, AI is being utilized in various spheres of agriculture, including but not limited to crop surveillance, irrigation management, disease identification, fertilization practices, task automation, image manipulation, data processing, yield forecasting, supply chain optimization, implementation of decision support system (DSS), weed control, and the enhancement of resource utilization. Whereas AI supports food safety and security by ensuring higher crop yields that are acquired by harnessing the potential of multi-temporal remote sensing (RS) techniques to accurately discern diverse crop phenotypes, monitor land cover dynamics, assess variations in soil organic matter, predict soil moisture levels, conduct plant biomass modeling, and enable comprehensive crop monitoring. The present study identifies various challenges, including financial, infrastructure, experts, data availability, customization, regulatory framework, cultural norms and attitudes, access to market, and interdisciplinary collaboration, in the adoption of AI for developing nations with their subsequent remedies. The identification of challenges and opportunities in the implementation of AI could ignite further research and actions in these regions; thereby supporting sustainable development.\",\"PeriodicalId\":508738,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1328530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1328530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI can empower agriculture for global food security: challenges and prospects in developing nations
Food and nutrition are a steadfast essential to all living organisms. With specific reference to humans, the sufficient and efficient supply of food is a challenge as the world population continues to grow. Artificial Intelligence (AI) could be identified as a plausible technology in this 5th industrial revolution in bringing us closer to achieving zero hunger by 2030—Goal 2 of the United Nations Sustainable Development Goals (UNSDG). This goal cannot be achieved unless the digital divide among developed and underdeveloped countries is addressed. Nevertheless, developing and underdeveloped regions fall behind in economic resources; however, they harbor untapped potential to effectively address the impending demands posed by the soaring world population. Therefore, this study explores the in-depth potential of AI in the agriculture sector for developing and under-developed countries. Similarly, it aims to emphasize the proven efficiency and spin-off applications of AI in the advancement of agriculture. Currently, AI is being utilized in various spheres of agriculture, including but not limited to crop surveillance, irrigation management, disease identification, fertilization practices, task automation, image manipulation, data processing, yield forecasting, supply chain optimization, implementation of decision support system (DSS), weed control, and the enhancement of resource utilization. Whereas AI supports food safety and security by ensuring higher crop yields that are acquired by harnessing the potential of multi-temporal remote sensing (RS) techniques to accurately discern diverse crop phenotypes, monitor land cover dynamics, assess variations in soil organic matter, predict soil moisture levels, conduct plant biomass modeling, and enable comprehensive crop monitoring. The present study identifies various challenges, including financial, infrastructure, experts, data availability, customization, regulatory framework, cultural norms and attitudes, access to market, and interdisciplinary collaboration, in the adoption of AI for developing nations with their subsequent remedies. The identification of challenges and opportunities in the implementation of AI could ignite further research and actions in these regions; thereby supporting sustainable development.