气囊厚度对加长型手柄气动落地式千斤顶性能影响的建模与仿真

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY Modelling and Simulation in Engineering Pub Date : 2024-04-25 DOI:10.1155/2024/6500007
Abduljebar Mahmud Aliy, Ramesh Babu Nallamothu, Abdulbasit Nasir
{"title":"气囊厚度对加长型手柄气动落地式千斤顶性能影响的建模与仿真","authors":"Abduljebar Mahmud Aliy, Ramesh Babu Nallamothu, Abdulbasit Nasir","doi":"10.1155/2024/6500007","DOIUrl":null,"url":null,"abstract":"In the process of changing tires, drivers require a suitable lifting device, namely, a jack, that can be inserted into a designated slot strategically positioned beneath the vehicle. Similarly, in workshops and maintenance facilities, jacks are essential for part replacements and maintenance. This research focuses on the design and analysis of extended handle pneumatic floor jacks specifically tailored for light-duty vehicles. The aim is to enhance effectiveness by enabling the repair of multiple vehicles simultaneously using a single compressor. The study utilizes ANSYS 2022R1 to assess the structural weaknesses of pneumatic airbags, aiming to explore technological advancements and develop an optimal airbag design capable of lifting light vehicles. Natural rubber is utilized as the airbag material, with thicknesses of 2.5 mm, 2.75 mm, and 3 mm. The study investigates three different airbag behaviors: von Mises stress, strain, and deformation in two directions. A pressure of 8.2 MPa is applied, and a weight of 4000 kg is imposed. The results indicate that the 2.5 mm and 2.75 mm thicknesses are unable to sustain the load and pressure, with the weakest area identified between the natural rubber and the metal cast iron that contacts the car’s body. Overall, the research achieved its objectives, and the findings will be effectively applied to model the extended handle pneumatic floor jack, facilitating tire lifting for maintenance and tire changes.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack\",\"authors\":\"Abduljebar Mahmud Aliy, Ramesh Babu Nallamothu, Abdulbasit Nasir\",\"doi\":\"10.1155/2024/6500007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the process of changing tires, drivers require a suitable lifting device, namely, a jack, that can be inserted into a designated slot strategically positioned beneath the vehicle. Similarly, in workshops and maintenance facilities, jacks are essential for part replacements and maintenance. This research focuses on the design and analysis of extended handle pneumatic floor jacks specifically tailored for light-duty vehicles. The aim is to enhance effectiveness by enabling the repair of multiple vehicles simultaneously using a single compressor. The study utilizes ANSYS 2022R1 to assess the structural weaknesses of pneumatic airbags, aiming to explore technological advancements and develop an optimal airbag design capable of lifting light vehicles. Natural rubber is utilized as the airbag material, with thicknesses of 2.5 mm, 2.75 mm, and 3 mm. The study investigates three different airbag behaviors: von Mises stress, strain, and deformation in two directions. A pressure of 8.2 MPa is applied, and a weight of 4000 kg is imposed. The results indicate that the 2.5 mm and 2.75 mm thicknesses are unable to sustain the load and pressure, with the weakest area identified between the natural rubber and the metal cast iron that contacts the car’s body. Overall, the research achieved its objectives, and the findings will be effectively applied to model the extended handle pneumatic floor jack, facilitating tire lifting for maintenance and tire changes.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6500007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6500007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在更换轮胎的过程中,驾驶员需要一个合适的升降装置,即千斤顶,它可以插入车辆下方战略位置的指定槽中。同样,在车间和维修设施中,千斤顶对于部件更换和维护也是必不可少的。本研究的重点是设计和分析专为轻型车辆定制的加长手柄气动落地式千斤顶。目的是通过使用单个压缩机同时维修多辆汽车来提高效率。研究利用 ANSYS 2022R1 评估气动安全气囊的结构弱点,旨在探索技术进步,并开发出能够举起轻型车辆的最佳安全气囊设计。气囊材料采用天然橡胶,厚度分别为 2.5 毫米、2.75 毫米和 3 毫米。研究调查了三种不同的安全气囊行为:冯-米塞斯应力、应变和双向变形。施加的压力为 8.2 兆帕,重量为 4000 千克。结果表明,厚度为 2.5 毫米和 2.75 毫米的安全气囊无法承受载荷和压力,最薄弱的区域位于天然橡胶和与车身接触的金属铸铁之间。总体而言,这项研究达到了预期目标,研究结果将有效地应用于加长手柄气动落地式千斤顶的建模,为维护和更换轮胎时抬起轮胎提供便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack
In the process of changing tires, drivers require a suitable lifting device, namely, a jack, that can be inserted into a designated slot strategically positioned beneath the vehicle. Similarly, in workshops and maintenance facilities, jacks are essential for part replacements and maintenance. This research focuses on the design and analysis of extended handle pneumatic floor jacks specifically tailored for light-duty vehicles. The aim is to enhance effectiveness by enabling the repair of multiple vehicles simultaneously using a single compressor. The study utilizes ANSYS 2022R1 to assess the structural weaknesses of pneumatic airbags, aiming to explore technological advancements and develop an optimal airbag design capable of lifting light vehicles. Natural rubber is utilized as the airbag material, with thicknesses of 2.5 mm, 2.75 mm, and 3 mm. The study investigates three different airbag behaviors: von Mises stress, strain, and deformation in two directions. A pressure of 8.2 MPa is applied, and a weight of 4000 kg is imposed. The results indicate that the 2.5 mm and 2.75 mm thicknesses are unable to sustain the load and pressure, with the weakest area identified between the natural rubber and the metal cast iron that contacts the car’s body. Overall, the research achieved its objectives, and the findings will be effectively applied to model the extended handle pneumatic floor jack, facilitating tire lifting for maintenance and tire changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
期刊最新文献
Finite Element Modelling and Simulation of Tunnel Gates of Dam Structures in ABAQUS Using Reduced-Integrated 8-Node Hexahedral Solid-Shell Element Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack Assessment of Fractional and Integer Order Models of Induction Motor Using MATLAB/Simulink State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell Predictive Modeling of Environmental Impact on Drone Datalink Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1