通过无监督学习检测全天空图像中的极光破裂

IF 1.7 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Annales Geophysicae Pub Date : 2024-04-25 DOI:10.5194/angeo-42-103-2024
N. Partamies, Bas Dol, Vincent Teissier, L. Juusola, M. Syrjäsuo, Hjalmar Mulders
{"title":"通过无监督学习检测全天空图像中的极光破裂","authors":"N. Partamies, Bas Dol, Vincent Teissier, L. Juusola, M. Syrjäsuo, Hjalmar Mulders","doi":"10.5194/angeo-42-103-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Due to a large number of automatic auroral camera systems on the ground, image data analysis requires more efficiency than what human expert visual inspection can provide. Furthermore, there is no solid consensus on how many different types or shapes exist in auroral displays. We report the first attempt to classify auroral morphological forms by an unsupervised learning method on an image set that contains both nightside and dayside aurora. We used 6 months of full-colour auroral all-sky images captured at a high-Arctic observatory on Svalbard, Norway, in 2019–2020. The selection of images containing aurora was performed manually. These images were then input into a convolutional neural network called SimCLR for feature extraction. The clustered and fused features resulted in 37 auroral morphological clusters. In the clustering of auroral image data with two different time resolutions, we found that the occurrence of 8 clusters strongly increased when the image cadence was high (24 s), while the occurrence of 14 clusters experienced little or no change with changes in input image cadence. We therefore investigated the temporal evolution of a group of eight “active aurora” clusters. Time periods for which this active aurora persisted for longer than two consecutive images with a maximum cadence of 6 min coincided with ground-magnetic deflections, and their occurrence was found to maximize around magnetic midnight. The active aurora onsets typically included vortical auroral structures and equivalent current patterns typical for substorms. Our findings therefore suggest that our unsupervised image clustering method can be used to detect auroral breakups in ground-based image datasets with a temporal accuracy determined by the image cadence.\n","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auroral breakup detection in all-sky images by unsupervised learning\",\"authors\":\"N. Partamies, Bas Dol, Vincent Teissier, L. Juusola, M. Syrjäsuo, Hjalmar Mulders\",\"doi\":\"10.5194/angeo-42-103-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Due to a large number of automatic auroral camera systems on the ground, image data analysis requires more efficiency than what human expert visual inspection can provide. Furthermore, there is no solid consensus on how many different types or shapes exist in auroral displays. We report the first attempt to classify auroral morphological forms by an unsupervised learning method on an image set that contains both nightside and dayside aurora. We used 6 months of full-colour auroral all-sky images captured at a high-Arctic observatory on Svalbard, Norway, in 2019–2020. The selection of images containing aurora was performed manually. These images were then input into a convolutional neural network called SimCLR for feature extraction. The clustered and fused features resulted in 37 auroral morphological clusters. In the clustering of auroral image data with two different time resolutions, we found that the occurrence of 8 clusters strongly increased when the image cadence was high (24 s), while the occurrence of 14 clusters experienced little or no change with changes in input image cadence. We therefore investigated the temporal evolution of a group of eight “active aurora” clusters. Time periods for which this active aurora persisted for longer than two consecutive images with a maximum cadence of 6 min coincided with ground-magnetic deflections, and their occurrence was found to maximize around magnetic midnight. The active aurora onsets typically included vortical auroral structures and equivalent current patterns typical for substorms. Our findings therefore suggest that our unsupervised image clustering method can be used to detect auroral breakups in ground-based image datasets with a temporal accuracy determined by the image cadence.\\n\",\"PeriodicalId\":50777,\"journal\":{\"name\":\"Annales Geophysicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Geophysicae\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/angeo-42-103-2024\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/angeo-42-103-2024","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要由于地面上有大量的极光自动摄像系统,图像数据分析所需的效率比人工专家目测所能提供的更高。此外,对于极光显示中有多少种不同的类型或形状,目前还没有一致的看法。我们报告了在包含夜极光和日极光的图像集上采用无监督学习方法对极光形态进行分类的首次尝试。我们使用了2019-2020年在挪威斯瓦尔巴群岛北极高纬度观测站拍摄的6个月全彩色极光全天空图像。包含极光的图像由人工挑选。然后将这些图像输入名为 SimCLR 的卷积神经网络进行特征提取。通过聚类和融合特征,产生了 37 个极光形态聚类。在对具有两种不同时间分辨率的极光图像数据进行聚类时,我们发现,当图像节奏较高时(24 秒),8 个聚类的出现率大幅上升,而 14 个聚类的出现率则几乎没有随着输入图像节奏的变化而变化。因此,我们研究了 8 个 "活跃极光 "集群的时间演变。这种活跃极光持续时间超过连续两幅图像的时间段(最长间隔为 6 分钟)与地磁偏转相吻合,并且发现它们在磁场午夜前后的出现率最高。活跃极光的发生通常包括涡状极光结构和亚暴典型的等效电流模式。因此,我们的研究结果表明,我们的无监督图像聚类方法可用于检测地面图像数据集中的极光破裂,其时间精度由图像节奏决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Auroral breakup detection in all-sky images by unsupervised learning
Abstract. Due to a large number of automatic auroral camera systems on the ground, image data analysis requires more efficiency than what human expert visual inspection can provide. Furthermore, there is no solid consensus on how many different types or shapes exist in auroral displays. We report the first attempt to classify auroral morphological forms by an unsupervised learning method on an image set that contains both nightside and dayside aurora. We used 6 months of full-colour auroral all-sky images captured at a high-Arctic observatory on Svalbard, Norway, in 2019–2020. The selection of images containing aurora was performed manually. These images were then input into a convolutional neural network called SimCLR for feature extraction. The clustered and fused features resulted in 37 auroral morphological clusters. In the clustering of auroral image data with two different time resolutions, we found that the occurrence of 8 clusters strongly increased when the image cadence was high (24 s), while the occurrence of 14 clusters experienced little or no change with changes in input image cadence. We therefore investigated the temporal evolution of a group of eight “active aurora” clusters. Time periods for which this active aurora persisted for longer than two consecutive images with a maximum cadence of 6 min coincided with ground-magnetic deflections, and their occurrence was found to maximize around magnetic midnight. The active aurora onsets typically included vortical auroral structures and equivalent current patterns typical for substorms. Our findings therefore suggest that our unsupervised image clustering method can be used to detect auroral breakups in ground-based image datasets with a temporal accuracy determined by the image cadence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Geophysicae
Annales Geophysicae 地学-地球科学综合
CiteScore
4.30
自引率
0.00%
发文量
42
审稿时长
2 months
期刊介绍: Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.
期刊最新文献
Ionospheric upwelling and the level of associated noise at solar minimum Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory Low-frequency solar radio type II bursts and their association with space weather events during the ascending phase of solar cycle 25 The investigation of June 21 and 25, 2015 CMEs using EUHFORIA Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1