用生物碳拌和的耐旱根瘤菌促进小麦生长的潜力

Plants Pub Date : 2024-04-24 DOI:10.3390/plants13091183
Sidra Noureen, Atia Iqbal, H. A. Muqeet
{"title":"用生物碳拌和的耐旱根瘤菌促进小麦生长的潜力","authors":"Sidra Noureen, Atia Iqbal, H. A. Muqeet","doi":"10.3390/plants13091183","DOIUrl":null,"url":null,"abstract":"Drought stress is the prime obstacle for worldwide agricultural production and necessitates innovative strategies for enhancing crop resilience. This study explores the efficacy of plant growth-promoting rhizobacteria (PGPR) and biochar (BC) as sustainable amendments for mitigating the effects of drought on wheat growth. Multiple experiments were carried out on isolated strains to assess their drought tolerance potential and multiple plant growth-promoting attributes. Experiments in the laboratory and natural environment were conducted to assess the impact of plant growth-promoting rhizobacteria, biochar, and their synergistic application on various growth parameters of wheat. The results revealed that the drought-tolerant PGPR strains (Bacillus subtilis and Bacillus tequilensis), alongside biochar (rice husk), alleviated the phytotoxic impact of drought by increasing the root length from 17.0% to 70.0% and shoot length from 30.0% to 82.0% as compared to un-inoculated stressed controls. The total chlorophyll and carotenoid contents of the plants were substantially increased to 477% and 423%, respectively, when biochar and PGPR were applied synergistically. Significant enhancements in membrane stability index, relative water content, proline, and sugar level were achieved by combining biochar and bacterial strains, resulting in increases of 19.5%, 37.9%, 219%, and 300%, respectively. The yield of wheat in terms of plant height, spike length, number of spikelets per spike, and number of grains per spike was enhanced from 26.7% to 44.6%, 23.5% to 62.7%, 91.5% to 154%, and 137% to 182%, respectively. It was concluded that the biochar-based application of PGPR induced drought tolerance in wheat under water deficit conditions, ultimately improving the production and yield of wheat.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of Drought Tolerant Rhizobacteria Amended with Biochar on Growth Promotion in Wheat\",\"authors\":\"Sidra Noureen, Atia Iqbal, H. A. Muqeet\",\"doi\":\"10.3390/plants13091183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought stress is the prime obstacle for worldwide agricultural production and necessitates innovative strategies for enhancing crop resilience. This study explores the efficacy of plant growth-promoting rhizobacteria (PGPR) and biochar (BC) as sustainable amendments for mitigating the effects of drought on wheat growth. Multiple experiments were carried out on isolated strains to assess their drought tolerance potential and multiple plant growth-promoting attributes. Experiments in the laboratory and natural environment were conducted to assess the impact of plant growth-promoting rhizobacteria, biochar, and their synergistic application on various growth parameters of wheat. The results revealed that the drought-tolerant PGPR strains (Bacillus subtilis and Bacillus tequilensis), alongside biochar (rice husk), alleviated the phytotoxic impact of drought by increasing the root length from 17.0% to 70.0% and shoot length from 30.0% to 82.0% as compared to un-inoculated stressed controls. The total chlorophyll and carotenoid contents of the plants were substantially increased to 477% and 423%, respectively, when biochar and PGPR were applied synergistically. Significant enhancements in membrane stability index, relative water content, proline, and sugar level were achieved by combining biochar and bacterial strains, resulting in increases of 19.5%, 37.9%, 219%, and 300%, respectively. The yield of wheat in terms of plant height, spike length, number of spikelets per spike, and number of grains per spike was enhanced from 26.7% to 44.6%, 23.5% to 62.7%, 91.5% to 154%, and 137% to 182%, respectively. It was concluded that the biochar-based application of PGPR induced drought tolerance in wheat under water deficit conditions, ultimately improving the production and yield of wheat.\",\"PeriodicalId\":509472,\"journal\":{\"name\":\"Plants\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/plants13091183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/plants13091183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

干旱胁迫是全球农业生产的主要障碍,因此有必要采取创新战略来提高作物的抗旱能力。本研究探讨了植物生长促进根瘤菌(PGPR)和生物炭(BC)作为可持续添加剂在减轻干旱对小麦生长影响方面的功效。对分离出来的菌株进行了多项实验,以评估其耐旱潜力和多种植物生长促进特性。在实验室和自然环境中进行了实验,以评估促进植物生长的根瘤菌、生物炭及其协同应用对小麦各种生长参数的影响。结果表明,与未接种的受压对照组相比,耐旱的 PGPR 菌株(枯草芽孢杆菌和茶枯草芽孢杆菌)与生物炭(稻壳)一起使用,可将根长从 17.0% 增加到 70.0%,芽长从 30.0% 增加到 82.0%,从而减轻了干旱的植物毒性影响。在生物炭和 PGPR 的协同作用下,植物的总叶绿素和类胡萝卜素含量分别大幅增加了 477% 和 423%。将生物炭和细菌菌株结合使用可显著提高膜稳定性指数、相对含水量、脯氨酸和糖度,分别提高了 19.5%、37.9%、219% 和 300%。小麦的株高、穗长、每穗小穗数和每穗粒数的产量分别从 26.7% 提高到 44.6%、23.5% 提高到 62.7%、91.5% 提高到 154%、137% 提高到 182%。结论是基于生物炭的 PGPR 应用诱导了小麦在缺水条件下的抗旱性,最终提高了小麦的产量和产值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential of Drought Tolerant Rhizobacteria Amended with Biochar on Growth Promotion in Wheat
Drought stress is the prime obstacle for worldwide agricultural production and necessitates innovative strategies for enhancing crop resilience. This study explores the efficacy of plant growth-promoting rhizobacteria (PGPR) and biochar (BC) as sustainable amendments for mitigating the effects of drought on wheat growth. Multiple experiments were carried out on isolated strains to assess their drought tolerance potential and multiple plant growth-promoting attributes. Experiments in the laboratory and natural environment were conducted to assess the impact of plant growth-promoting rhizobacteria, biochar, and their synergistic application on various growth parameters of wheat. The results revealed that the drought-tolerant PGPR strains (Bacillus subtilis and Bacillus tequilensis), alongside biochar (rice husk), alleviated the phytotoxic impact of drought by increasing the root length from 17.0% to 70.0% and shoot length from 30.0% to 82.0% as compared to un-inoculated stressed controls. The total chlorophyll and carotenoid contents of the plants were substantially increased to 477% and 423%, respectively, when biochar and PGPR were applied synergistically. Significant enhancements in membrane stability index, relative water content, proline, and sugar level were achieved by combining biochar and bacterial strains, resulting in increases of 19.5%, 37.9%, 219%, and 300%, respectively. The yield of wheat in terms of plant height, spike length, number of spikelets per spike, and number of grains per spike was enhanced from 26.7% to 44.6%, 23.5% to 62.7%, 91.5% to 154%, and 137% to 182%, respectively. It was concluded that the biochar-based application of PGPR induced drought tolerance in wheat under water deficit conditions, ultimately improving the production and yield of wheat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genome-Wide Identification of the CYP716 Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and Its Role in the Regulation of Triterpenoid Saponin Biosynthesis An Emerging Disease of Chickpea, Basal Stem Rot Caused by Diaporthe aspalathi in China The First Domesticated ‘Cheongju Sorori Rice’ Excavated in Korea Phytoremediation Potential of Crotalaria pumila (Fabaceae) in Soils Polluted with Heavy Metals: Evidence from Field and Controlled Experiments Wild-Edible Allium Species from Highlands of Eastern Anatolia: Phytochemical Composition and In Vitro Biological Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1