{"title":"利用混合五边形赫米特样条拼合技术求解四阶反应扩散方程的行波方案","authors":"Priyanka Priyanka, Fateh Mebarek-Oudina, Saroj Sahani, Shelly Arora","doi":"10.1007/s40065-024-00459-y","DOIUrl":null,"url":null,"abstract":"<div><p>Fourth order extended Fisher Kolmogorov reaction diffusion equation has been solved numerically using a hybrid technique. The temporal direction has been discretized using Crank Nicolson technique. The space direction has been split into second order equation using twice continuously differentiable function. The space splitting results into a system of equations with linear heat equation and non linear reaction diffusion equation. Quintic Hermite interpolating polynomials have been implemented to discretize the space direction which gives a system of collocation equations to be solved numerically. The hybrid technique ensures the fourth order convergence in space and second order in time direction. Unconditional stability has been obtained by plotting the eigen values of the matrix of iterations. Travelling wave behaviour of dependent variable has been obtained and the computed numerical values are shown by surfaces and curves for analyzing the behaviour of the numerical solution in both space and time directions.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-024-00459-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Travelling wave solution of fourth order reaction diffusion equation using hybrid quintic hermite splines collocation technique\",\"authors\":\"Priyanka Priyanka, Fateh Mebarek-Oudina, Saroj Sahani, Shelly Arora\",\"doi\":\"10.1007/s40065-024-00459-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fourth order extended Fisher Kolmogorov reaction diffusion equation has been solved numerically using a hybrid technique. The temporal direction has been discretized using Crank Nicolson technique. The space direction has been split into second order equation using twice continuously differentiable function. The space splitting results into a system of equations with linear heat equation and non linear reaction diffusion equation. Quintic Hermite interpolating polynomials have been implemented to discretize the space direction which gives a system of collocation equations to be solved numerically. The hybrid technique ensures the fourth order convergence in space and second order in time direction. Unconditional stability has been obtained by plotting the eigen values of the matrix of iterations. Travelling wave behaviour of dependent variable has been obtained and the computed numerical values are shown by surfaces and curves for analyzing the behaviour of the numerical solution in both space and time directions.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40065-024-00459-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-024-00459-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-024-00459-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Travelling wave solution of fourth order reaction diffusion equation using hybrid quintic hermite splines collocation technique
Fourth order extended Fisher Kolmogorov reaction diffusion equation has been solved numerically using a hybrid technique. The temporal direction has been discretized using Crank Nicolson technique. The space direction has been split into second order equation using twice continuously differentiable function. The space splitting results into a system of equations with linear heat equation and non linear reaction diffusion equation. Quintic Hermite interpolating polynomials have been implemented to discretize the space direction which gives a system of collocation equations to be solved numerically. The hybrid technique ensures the fourth order convergence in space and second order in time direction. Unconditional stability has been obtained by plotting the eigen values of the matrix of iterations. Travelling wave behaviour of dependent variable has been obtained and the computed numerical values are shown by surfaces and curves for analyzing the behaviour of the numerical solution in both space and time directions.
期刊介绍:
The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics.
Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.