了解密度泛函选择和范德华处理对预测胺接枝金属有机框架的结合构型、负载和稳定性的影响。

Jonathan R Owens, Bojun Feng, Jie Liu, David Moore
{"title":"了解密度泛函选择和范德华处理对预测胺接枝金属有机框架的结合构型、负载和稳定性的影响。","authors":"Jonathan R Owens, Bojun Feng, Jie Liu, David Moore","doi":"10.1063/5.0202963","DOIUrl":null,"url":null,"abstract":"Metal organic frameworks (MOFs) are crystalline, three-dimensional structures with high surface areas and tunable porosities. Made from metal nodes connected by organic linkers, the exact properties of a given MOF are determined by node and linker choice. MOFs hold promise for numerous applications, including gas capture and storage. M2(4,4'-dioxidobiphenyl-3,3'-dicarboxylate)-henceforth simply M2(dobpdc), with M = Mg, Mn, Fe, Co, Ni, Cu, or Zn-is regarded as one of the most promising structures for CO2 capture applications. Further modification of the MOF with diamines or tetramines can significantly boost gas species selectivity, a necessity for the ultra-dilute CO2 concentrations in the direct-air capture of CO2. There are countless potential diamines and tetramines, paving the way for a vast number of potential sorbents to be probed for CO2 adsorption properties. The number of amines and their configuration in the MOF pore are key drivers of CO2 adsorption capacity and kinetics, and so a validation of computational prediction of these quantities is required to suitably use computational methods in the discovery and screening of amine-functionalized sorbents. In this work, we study the predictive accuracy of density functional theory and related calculations on amine loading and configuration for one diamine and two tetramines. In particular, we explore the Perdew-Burke-Ernzerhof (PBE) functional and its formulation for solids (PBEsol) with and without the Grimme-D2 and Grimme-D3 pairwise corrections (PBE+D2/3 and PBEsol+D2/3), two revised PBE functionals with the Grimme-D2 and Grimme-D3 pairwise corrections (RPBE+D2/3 and revPBE+D2/3), and the nonlocal van der Waals correlation (vdW-DF2) functional. We also investigate a universal graph deep learning interatomic potential's (M3GNet) predictive accuracy for loading and configuration. These results allow us to identify a useful screening procedure for configuration prediction that has a coarse component for quick evaluation and a higher accuracy component for detailed analysis. Our general observation is that the neural network-based potential can be used as a high-level and rapid screening tool, whereas PBEsol+D3 gives a completely qualitatively predictive picture across all systems studied, and can thus be used for high accuracy motif predictions. We close by briefly exploring the predictions of relative thermal stability for the different functionals and dispersion corrections.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"19 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the effect of density functional choice and van der Waals treatment on predicting the binding configuration, loading, and stability of amine-grafted metal organic frameworks.\",\"authors\":\"Jonathan R Owens, Bojun Feng, Jie Liu, David Moore\",\"doi\":\"10.1063/5.0202963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal organic frameworks (MOFs) are crystalline, three-dimensional structures with high surface areas and tunable porosities. Made from metal nodes connected by organic linkers, the exact properties of a given MOF are determined by node and linker choice. MOFs hold promise for numerous applications, including gas capture and storage. M2(4,4'-dioxidobiphenyl-3,3'-dicarboxylate)-henceforth simply M2(dobpdc), with M = Mg, Mn, Fe, Co, Ni, Cu, or Zn-is regarded as one of the most promising structures for CO2 capture applications. Further modification of the MOF with diamines or tetramines can significantly boost gas species selectivity, a necessity for the ultra-dilute CO2 concentrations in the direct-air capture of CO2. There are countless potential diamines and tetramines, paving the way for a vast number of potential sorbents to be probed for CO2 adsorption properties. The number of amines and their configuration in the MOF pore are key drivers of CO2 adsorption capacity and kinetics, and so a validation of computational prediction of these quantities is required to suitably use computational methods in the discovery and screening of amine-functionalized sorbents. In this work, we study the predictive accuracy of density functional theory and related calculations on amine loading and configuration for one diamine and two tetramines. In particular, we explore the Perdew-Burke-Ernzerhof (PBE) functional and its formulation for solids (PBEsol) with and without the Grimme-D2 and Grimme-D3 pairwise corrections (PBE+D2/3 and PBEsol+D2/3), two revised PBE functionals with the Grimme-D2 and Grimme-D3 pairwise corrections (RPBE+D2/3 and revPBE+D2/3), and the nonlocal van der Waals correlation (vdW-DF2) functional. We also investigate a universal graph deep learning interatomic potential's (M3GNet) predictive accuracy for loading and configuration. These results allow us to identify a useful screening procedure for configuration prediction that has a coarse component for quick evaluation and a higher accuracy component for detailed analysis. Our general observation is that the neural network-based potential can be used as a high-level and rapid screening tool, whereas PBEsol+D3 gives a completely qualitatively predictive picture across all systems studied, and can thus be used for high accuracy motif predictions. We close by briefly exploring the predictions of relative thermal stability for the different functionals and dispersion corrections.\",\"PeriodicalId\":501648,\"journal\":{\"name\":\"The Journal of Chemical Physics\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0202963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0202963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)是具有高表面积和可调孔隙率的晶体三维结构。它由金属节点和有机连接体连接而成,节点和连接体的选择决定了特定 MOF 的确切性质。MOF 有望应用于多种领域,包括气体捕获和储存。M2(4,4'-dioxidobiphenyl-3,3'-dicarboxylate)- 简写为 M2(dobpdc),M = Mg、Mn、Fe、Co、Ni、Cu 或 Zn - 被认为是最有希望用于二氧化碳捕集的结构之一。用二元胺或四元胺对 MOF 进行进一步改性可显著提高气体物种的选择性,而这正是直接空气捕集二氧化碳过程中超低浓度二氧化碳所必需的。潜在的二胺和四胺不计其数,这为研究大量潜在吸附剂的二氧化碳吸附特性铺平了道路。胺的数量及其在 MOF 孔中的构型是二氧化碳吸附能力和动力学的关键驱动因素,因此需要对这些量进行计算预测验证,以便在发现和筛选胺功能化吸附剂时适当地使用计算方法。在这项工作中,我们研究了密度泛函理论和相关计算对一种二胺和两种四胺的胺负载和构型的预测准确性。特别是,我们探索了带或不带 Grimme-D2 和 Grimme-D3 配对校正(PBE+D2/3 和 PBEsol+D2/3)的 Perdew-Burke-Ernzerhof (PBE)函数及其用于固体的公式(PBEsol)、两个带 Grimme-D2 和 Grimme-D3 配对校正的修正 PBE 函数(RPBE+D2/3 和 revPBE+D2/3)以及非局部范德华相关(vdW-DF2)函数。我们还研究了通用图深度学习原子间势(M3GNet)对加载和构型的预测精度。这些结果使我们能够确定一种有用的构型预测筛选程序,它具有用于快速评估的粗略部分和用于详细分析的更高精度部分。我们的总体观察结果是,基于神经网络的潜能值可用作高级和快速筛选工具,而 PBEsol+D3 则对所有研究系统给出了完全定性的预测结果,因此可用于高精度图案预测。最后,我们简要探讨了不同函数和色散修正对相对热稳定性的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the effect of density functional choice and van der Waals treatment on predicting the binding configuration, loading, and stability of amine-grafted metal organic frameworks.
Metal organic frameworks (MOFs) are crystalline, three-dimensional structures with high surface areas and tunable porosities. Made from metal nodes connected by organic linkers, the exact properties of a given MOF are determined by node and linker choice. MOFs hold promise for numerous applications, including gas capture and storage. M2(4,4'-dioxidobiphenyl-3,3'-dicarboxylate)-henceforth simply M2(dobpdc), with M = Mg, Mn, Fe, Co, Ni, Cu, or Zn-is regarded as one of the most promising structures for CO2 capture applications. Further modification of the MOF with diamines or tetramines can significantly boost gas species selectivity, a necessity for the ultra-dilute CO2 concentrations in the direct-air capture of CO2. There are countless potential diamines and tetramines, paving the way for a vast number of potential sorbents to be probed for CO2 adsorption properties. The number of amines and their configuration in the MOF pore are key drivers of CO2 adsorption capacity and kinetics, and so a validation of computational prediction of these quantities is required to suitably use computational methods in the discovery and screening of amine-functionalized sorbents. In this work, we study the predictive accuracy of density functional theory and related calculations on amine loading and configuration for one diamine and two tetramines. In particular, we explore the Perdew-Burke-Ernzerhof (PBE) functional and its formulation for solids (PBEsol) with and without the Grimme-D2 and Grimme-D3 pairwise corrections (PBE+D2/3 and PBEsol+D2/3), two revised PBE functionals with the Grimme-D2 and Grimme-D3 pairwise corrections (RPBE+D2/3 and revPBE+D2/3), and the nonlocal van der Waals correlation (vdW-DF2) functional. We also investigate a universal graph deep learning interatomic potential's (M3GNet) predictive accuracy for loading and configuration. These results allow us to identify a useful screening procedure for configuration prediction that has a coarse component for quick evaluation and a higher accuracy component for detailed analysis. Our general observation is that the neural network-based potential can be used as a high-level and rapid screening tool, whereas PBEsol+D3 gives a completely qualitatively predictive picture across all systems studied, and can thus be used for high accuracy motif predictions. We close by briefly exploring the predictions of relative thermal stability for the different functionals and dispersion corrections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study GW with hybrid functionals for large molecular systems Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine The “simple” photochemistry of thiophene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1