Lorenzo Bini, Lapo Renai, Michelangelo Fichera, William Antonio Petrucci, Anna Lenzi, Stefano Biricolti, Edgardo Giordani, Luca Rivoira, Maria Concetta Bruzzoniti, Dariusz Piesik and Massimo Del Bubba,
{"title":"评估可持续生物炭富集基质对作为相关示范作物的番茄(Solanum lycopersicum L.)的安全性和质量的影响","authors":"Lorenzo Bini, Lapo Renai, Michelangelo Fichera, William Antonio Petrucci, Anna Lenzi, Stefano Biricolti, Edgardo Giordani, Luca Rivoira, Maria Concetta Bruzzoniti, Dariusz Piesik and Massimo Del Bubba, ","doi":"10.1021/acsagscitech.3c00589","DOIUrl":null,"url":null,"abstract":"<p >Forestry-waste biochar was tested as a commercial substrate (peat:lapillus 1:1 <i>v/v</i>) amendment in growing tomatoes (<i>Solanum lycopersicum</i> L.). Substrates were 0% (control), 5%, 10%, 20%, and 40% (% <i>v/v</i>) biochar-enriched and were characterized for their textural and physicochemical properties. After harvesting, tomato production (i.e., plant and fruits), quality (e.g., nutrition and nutraceutics), and safety (i.e., biochar-related pollutants) were assessed according to the different growing media. 10-to-40% biochar-enriched substrates only exceeded the pH threshold set by L.D. 75/2010. Ni and Mn exhibited a similar trend between substrates and fruits, while Cr, Pb, and Cd were absent. Plant biomass increased (up to 11–29%) according to biochar content, which conversely diminished fruit production (∼25–60% reduction). Only acenaphthene exhibited an increasing profile (11–12 μg kg<sup>–1</sup>) according to the treatments, nevertheless complying with the European regulations. PLS-DA confirmed practice suitability by substrate–crop correlation, providing prediction models for quality and safety assessment.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Impact of Sustainable Biochar-Enriched Substrates on Safety and Quality of Tomato (Solanum lycopersicum L.) as Relevant Model Crop\",\"authors\":\"Lorenzo Bini, Lapo Renai, Michelangelo Fichera, William Antonio Petrucci, Anna Lenzi, Stefano Biricolti, Edgardo Giordani, Luca Rivoira, Maria Concetta Bruzzoniti, Dariusz Piesik and Massimo Del Bubba, \",\"doi\":\"10.1021/acsagscitech.3c00589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Forestry-waste biochar was tested as a commercial substrate (peat:lapillus 1:1 <i>v/v</i>) amendment in growing tomatoes (<i>Solanum lycopersicum</i> L.). Substrates were 0% (control), 5%, 10%, 20%, and 40% (% <i>v/v</i>) biochar-enriched and were characterized for their textural and physicochemical properties. After harvesting, tomato production (i.e., plant and fruits), quality (e.g., nutrition and nutraceutics), and safety (i.e., biochar-related pollutants) were assessed according to the different growing media. 10-to-40% biochar-enriched substrates only exceeded the pH threshold set by L.D. 75/2010. Ni and Mn exhibited a similar trend between substrates and fruits, while Cr, Pb, and Cd were absent. Plant biomass increased (up to 11–29%) according to biochar content, which conversely diminished fruit production (∼25–60% reduction). Only acenaphthene exhibited an increasing profile (11–12 μg kg<sup>–1</sup>) according to the treatments, nevertheless complying with the European regulations. PLS-DA confirmed practice suitability by substrate–crop correlation, providing prediction models for quality and safety assessment.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.3c00589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.3c00589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessing the Impact of Sustainable Biochar-Enriched Substrates on Safety and Quality of Tomato (Solanum lycopersicum L.) as Relevant Model Crop
Forestry-waste biochar was tested as a commercial substrate (peat:lapillus 1:1 v/v) amendment in growing tomatoes (Solanum lycopersicum L.). Substrates were 0% (control), 5%, 10%, 20%, and 40% (% v/v) biochar-enriched and were characterized for their textural and physicochemical properties. After harvesting, tomato production (i.e., plant and fruits), quality (e.g., nutrition and nutraceutics), and safety (i.e., biochar-related pollutants) were assessed according to the different growing media. 10-to-40% biochar-enriched substrates only exceeded the pH threshold set by L.D. 75/2010. Ni and Mn exhibited a similar trend between substrates and fruits, while Cr, Pb, and Cd were absent. Plant biomass increased (up to 11–29%) according to biochar content, which conversely diminished fruit production (∼25–60% reduction). Only acenaphthene exhibited an increasing profile (11–12 μg kg–1) according to the treatments, nevertheless complying with the European regulations. PLS-DA confirmed practice suitability by substrate–crop correlation, providing prediction models for quality and safety assessment.