用于便携式设备移动计算的轻量级面部表情估算

Jinming Liu
{"title":"用于便携式设备移动计算的轻量级面部表情估算","authors":"Jinming Liu","doi":"10.1002/itl2.533","DOIUrl":null,"url":null,"abstract":"Facial expression recognition has been studied for many years, especially with the development of deep learning. However, the existing researches still have the following two issues. Firstly, the intensity of facial expression is neglected. Secondly, the deep learning based approaches cannot be directly deployed in the devices with limited resources. In order to tackle these two issues, this paper proposes a lightweight facial expression estimation method using a shallow ordinal regression algorithm, which is deployed in a portable smart device for mobile computing in IoTs. Compared with classification based facial expression recognition methods, ordinal regression considers the intensity of facial expression to achieve better mean absolute error (MAE), which is validated by experiments on several public facial expression datasets. The simulation in portable device also demonstrates its effectiveness for mobile computing.","PeriodicalId":509592,"journal":{"name":"Internet Technology Letters","volume":"67 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight facial expression estimation for mobile computing in portable device\",\"authors\":\"Jinming Liu\",\"doi\":\"10.1002/itl2.533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition has been studied for many years, especially with the development of deep learning. However, the existing researches still have the following two issues. Firstly, the intensity of facial expression is neglected. Secondly, the deep learning based approaches cannot be directly deployed in the devices with limited resources. In order to tackle these two issues, this paper proposes a lightweight facial expression estimation method using a shallow ordinal regression algorithm, which is deployed in a portable smart device for mobile computing in IoTs. Compared with classification based facial expression recognition methods, ordinal regression considers the intensity of facial expression to achieve better mean absolute error (MAE), which is validated by experiments on several public facial expression datasets. The simulation in portable device also demonstrates its effectiveness for mobile computing.\",\"PeriodicalId\":509592,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"67 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/itl2.533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/itl2.533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部表情识别已被研究多年,尤其是随着深度学习的发展。然而,现有研究仍存在以下两个问题。首先,面部表情的强度被忽视。其次,基于深度学习的方法无法直接应用于资源有限的设备中。针对这两个问题,本文提出了一种使用浅层序回归算法的轻量级面部表情估计方法,并将其部署在便携式智能设备中,用于物联网中的移动计算。与基于分类的面部表情识别方法相比,序回归考虑了面部表情的强度,从而获得了更好的平均绝对误差(MAE),这一点在多个公开的面部表情数据集上得到了实验验证。在便携设备上的模拟也证明了它在移动计算中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight facial expression estimation for mobile computing in portable device
Facial expression recognition has been studied for many years, especially with the development of deep learning. However, the existing researches still have the following two issues. Firstly, the intensity of facial expression is neglected. Secondly, the deep learning based approaches cannot be directly deployed in the devices with limited resources. In order to tackle these two issues, this paper proposes a lightweight facial expression estimation method using a shallow ordinal regression algorithm, which is deployed in a portable smart device for mobile computing in IoTs. Compared with classification based facial expression recognition methods, ordinal regression considers the intensity of facial expression to achieve better mean absolute error (MAE), which is validated by experiments on several public facial expression datasets. The simulation in portable device also demonstrates its effectiveness for mobile computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative resource allocation mechanism for optimizing 5G multi user‐massive multiple input multiple output system An Internet of Things security‐based E parking framework for smart city application using Lora Performance evaluation and investigation of diffraction optical elements effect on bit error rate of free space optics and performance investigation of space uplink wireless optical communication under varying atmospheric turbulence conditions Design and analysis of stochastic 5G new radio LDPC decoder using adaptive sparse quantization kernel least mean square algorithm for optical satellite communications Research on the application of English short essay reading emotional analysis in online English teaching under IoT scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1