使用混合框架检测涂鸦的变化

Benjamin Wild, Geert Verhoeven, Rafał Muszyński, Norbert Pfeifer
{"title":"使用混合框架检测涂鸦的变化","authors":"Benjamin Wild, Geert Verhoeven, Rafał Muszyński, Norbert Pfeifer","doi":"10.1111/phor.12496","DOIUrl":null,"url":null,"abstract":"Graffiti, by their very nature, are ephemeral, sometimes even vanishing before creators finish them. This transience is part of graffiti's allure yet signifies the continuous loss of this often disputed form of cultural heritage. To counteract this, graffiti documentation efforts have steadily increased over the past decade. One of the primary challenges in any documentation endeavour is identifying and recording new creations. Image‐based change detection can greatly help in this process, effectuating more comprehensive documentation, less biased digital safeguarding and improved understanding of graffiti. This paper introduces a novel and largely automated image‐based graffiti change detection method. The methodology uses an incremental structure‐from‐motion approach and synthetic cameras to generate co‐registered graffiti images from different areas. These synthetic images are fed into a hybrid change detection pipeline combining a new pixel‐based change detection method with a feature‐based one. The approach was tested on a large and publicly available reference dataset captured along the Donaukanal (Eng. Danube Canal), one of Vienna's graffiti hotspots. With a precision of 87% and a recall of 77%, the results reveal that the proposed change detection workflow can indicate newly added graffiti in a monitored graffiti‐scape, thus supporting a more comprehensive graffiti documentation.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting change in graffiti using a hybrid framework\",\"authors\":\"Benjamin Wild, Geert Verhoeven, Rafał Muszyński, Norbert Pfeifer\",\"doi\":\"10.1111/phor.12496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graffiti, by their very nature, are ephemeral, sometimes even vanishing before creators finish them. This transience is part of graffiti's allure yet signifies the continuous loss of this often disputed form of cultural heritage. To counteract this, graffiti documentation efforts have steadily increased over the past decade. One of the primary challenges in any documentation endeavour is identifying and recording new creations. Image‐based change detection can greatly help in this process, effectuating more comprehensive documentation, less biased digital safeguarding and improved understanding of graffiti. This paper introduces a novel and largely automated image‐based graffiti change detection method. The methodology uses an incremental structure‐from‐motion approach and synthetic cameras to generate co‐registered graffiti images from different areas. These synthetic images are fed into a hybrid change detection pipeline combining a new pixel‐based change detection method with a feature‐based one. The approach was tested on a large and publicly available reference dataset captured along the Donaukanal (Eng. Danube Canal), one of Vienna's graffiti hotspots. With a precision of 87% and a recall of 77%, the results reveal that the proposed change detection workflow can indicate newly added graffiti in a monitored graffiti‐scape, thus supporting a more comprehensive graffiti documentation.\",\"PeriodicalId\":22881,\"journal\":{\"name\":\"The Photogrammetric Record\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Photogrammetric Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/phor.12496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

涂鸦就其本质而言是短暂的,有时甚至在创作者完成涂鸦之前就已消失。这种短暂性是涂鸦魅力的一部分,但同时也意味着这种经常引起争议的文化遗产形式正在不断消失。为了应对这种情况,在过去十年中,涂鸦文献工作稳步增加。任何记录工作的主要挑战之一都是识别和记录新的创作。基于图像的变化检测可以极大地帮助这一过程,实现更全面的记录,减少数字保护的偏差,提高对涂鸦的理解。本文介绍了一种基于图像的新型涂鸦变化自动检测方法。该方法采用从运动到结构的增量方法和合成摄像机,生成来自不同区域的共注册涂鸦图像。这些合成图像被送入混合变化检测管道,该管道结合了基于像素的新变化检测方法和基于特征的方法。该方法在沿维也纳涂鸦热点之一的多瑙河(Donaukanal)采集的大型公开参考数据集上进行了测试。结果表明,所提出的变化检测工作流程的精确度为 87%,召回率为 77%,能够在受监控的涂鸦景观中显示新添加的涂鸦,从而支持更全面的涂鸦记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting change in graffiti using a hybrid framework
Graffiti, by their very nature, are ephemeral, sometimes even vanishing before creators finish them. This transience is part of graffiti's allure yet signifies the continuous loss of this often disputed form of cultural heritage. To counteract this, graffiti documentation efforts have steadily increased over the past decade. One of the primary challenges in any documentation endeavour is identifying and recording new creations. Image‐based change detection can greatly help in this process, effectuating more comprehensive documentation, less biased digital safeguarding and improved understanding of graffiti. This paper introduces a novel and largely automated image‐based graffiti change detection method. The methodology uses an incremental structure‐from‐motion approach and synthetic cameras to generate co‐registered graffiti images from different areas. These synthetic images are fed into a hybrid change detection pipeline combining a new pixel‐based change detection method with a feature‐based one. The approach was tested on a large and publicly available reference dataset captured along the Donaukanal (Eng. Danube Canal), one of Vienna's graffiti hotspots. With a precision of 87% and a recall of 77%, the results reveal that the proposed change detection workflow can indicate newly added graffiti in a monitored graffiti‐scape, thus supporting a more comprehensive graffiti documentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
59th Photogrammetric Week: Advancement in photogrammetry, remote sensing and Geoinformatics Obituary for Prof. Dr.‐Ing. Dr. h.c. mult. Gottfried Konecny Topographic mapping from space dedicated to Dr. Karsten Jacobsen’s 80th birthday Frontispiece: Comparison of 3D models with texture before and after restoration ISPRS TC IV Mid‐Term Symposium: Spatial information to empower the Metaverse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1