{"title":"研究如何利用深度学习模型从街道级图像中进行土地覆被分类","authors":"Narumasa Tsutsumida, Jing Zhao, Naho Shibuya, Kenlo Nasahara, Takeo Tadono","doi":"10.1111/1440-1703.12470","DOIUrl":null,"url":null,"abstract":"<p>Land cover classification mapping is the process of assigning labels to different types of land surfaces based on overhead imagery. However, acquiring reference samples through fieldwork for ground truth can be costly and time-intensive. Additionally, annotating high-resolution satellite images poses challenges, as certain land cover types are difficult to discern solely from nadir images. To address these challenges, this study examined the feasibility of using street-level imagery to support the collection of reference samples and identify land cover. We utilized 18,022 images captured in Japan, with 14 different land cover classes. Our approach involved using convolutional neural networks based on Inception-v4 and DenseNet, as well as Transformer-based Vision and Swin Transformers, both with and without pre-trained weights and fine-tuning techniques. Additionally, we explored explainability through Gradient-Weighted Class Activation Mapping (Grad-CAM). Our results indicate that using a Vision Transformer was the most effective method, achieving an overall accuracy of 86.12% and allowing for full explainability of land cover targets within an image. This paper proposes a promising solution for land cover classification from street-level imagery, which can be used for semi-automatic reference sample collection from geo-tagged street-level photos.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1440-1703.12470","citationCount":"0","resultStr":"{\"title\":\"Investigating the use of deep learning models for land cover classification from street-level imagery\",\"authors\":\"Narumasa Tsutsumida, Jing Zhao, Naho Shibuya, Kenlo Nasahara, Takeo Tadono\",\"doi\":\"10.1111/1440-1703.12470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Land cover classification mapping is the process of assigning labels to different types of land surfaces based on overhead imagery. However, acquiring reference samples through fieldwork for ground truth can be costly and time-intensive. Additionally, annotating high-resolution satellite images poses challenges, as certain land cover types are difficult to discern solely from nadir images. To address these challenges, this study examined the feasibility of using street-level imagery to support the collection of reference samples and identify land cover. We utilized 18,022 images captured in Japan, with 14 different land cover classes. Our approach involved using convolutional neural networks based on Inception-v4 and DenseNet, as well as Transformer-based Vision and Swin Transformers, both with and without pre-trained weights and fine-tuning techniques. Additionally, we explored explainability through Gradient-Weighted Class Activation Mapping (Grad-CAM). Our results indicate that using a Vision Transformer was the most effective method, achieving an overall accuracy of 86.12% and allowing for full explainability of land cover targets within an image. This paper proposes a promising solution for land cover classification from street-level imagery, which can be used for semi-automatic reference sample collection from geo-tagged street-level photos.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1440-1703.12470\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1703.12470\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1703.12470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the use of deep learning models for land cover classification from street-level imagery
Land cover classification mapping is the process of assigning labels to different types of land surfaces based on overhead imagery. However, acquiring reference samples through fieldwork for ground truth can be costly and time-intensive. Additionally, annotating high-resolution satellite images poses challenges, as certain land cover types are difficult to discern solely from nadir images. To address these challenges, this study examined the feasibility of using street-level imagery to support the collection of reference samples and identify land cover. We utilized 18,022 images captured in Japan, with 14 different land cover classes. Our approach involved using convolutional neural networks based on Inception-v4 and DenseNet, as well as Transformer-based Vision and Swin Transformers, both with and without pre-trained weights and fine-tuning techniques. Additionally, we explored explainability through Gradient-Weighted Class Activation Mapping (Grad-CAM). Our results indicate that using a Vision Transformer was the most effective method, achieving an overall accuracy of 86.12% and allowing for full explainability of land cover targets within an image. This paper proposes a promising solution for land cover classification from street-level imagery, which can be used for semi-automatic reference sample collection from geo-tagged street-level photos.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.