基于振动的轴箱轴承检测(考虑内外圈滚道缺陷

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2024-04-23 DOI:10.3390/lubricants12050142
Chuang Liu, Xinwen Zhang, Ruichen Wang, Qiang Guo, Junguo Li
{"title":"基于振动的轴箱轴承检测(考虑内外圈滚道缺陷","authors":"Chuang Liu, Xinwen Zhang, Ruichen Wang, Qiang Guo, Junguo Li","doi":"10.3390/lubricants12050142","DOIUrl":null,"url":null,"abstract":"The occurrence of an axlebox bearing ring raceway defect is an inevitable and commonly observed phenomenon in railway wheels. It not only leads to surface damage but also poses the potential threat of further damage and degradation, thereby increasing the risks associated with running safety and maintenance costs. Hence, it becomes imperative to detect raceway defects at an early stage to mitigate safety hazards and reduce maintenance efforts. In this study, the focus lies in investigating the effectiveness of vibration-based detection techniques for identifying raceway defects in high-speed train axlebox bearing systems. To achieve this, a dynamic model that accurately represents the coupling dynamics between the vehicle and the track is developed. This model incorporates various dynamic factors, such as traction transmission, gear transmission, and track geometry irregularities. By using the comprehensive dynamic model, the dynamic responses of the axlebox can be accurately calculated. The proposed methodology primarily revolves around analysing the vertical vibrations of the axlebox caused by raceway defects in both the time and frequency domains. Additionally, an envelope analysis using a developed band-pass filter is also employed. The results obtained from this study clearly demonstrate the successful detection of raceway defects in a more realistic vehicle model, thereby providing an efficient approach for the detection of axlebox bearing raceway defects. Consequently, this research contributes significantly to the field of high-speed train systems and paves the way for enhanced safety and maintenance practices.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration-Based Detection of Axlebox Bearing Considering Inner and Outer Ring Raceway Defects\",\"authors\":\"Chuang Liu, Xinwen Zhang, Ruichen Wang, Qiang Guo, Junguo Li\",\"doi\":\"10.3390/lubricants12050142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of an axlebox bearing ring raceway defect is an inevitable and commonly observed phenomenon in railway wheels. It not only leads to surface damage but also poses the potential threat of further damage and degradation, thereby increasing the risks associated with running safety and maintenance costs. Hence, it becomes imperative to detect raceway defects at an early stage to mitigate safety hazards and reduce maintenance efforts. In this study, the focus lies in investigating the effectiveness of vibration-based detection techniques for identifying raceway defects in high-speed train axlebox bearing systems. To achieve this, a dynamic model that accurately represents the coupling dynamics between the vehicle and the track is developed. This model incorporates various dynamic factors, such as traction transmission, gear transmission, and track geometry irregularities. By using the comprehensive dynamic model, the dynamic responses of the axlebox can be accurately calculated. The proposed methodology primarily revolves around analysing the vertical vibrations of the axlebox caused by raceway defects in both the time and frequency domains. Additionally, an envelope analysis using a developed band-pass filter is also employed. The results obtained from this study clearly demonstrate the successful detection of raceway defects in a more realistic vehicle model, thereby providing an efficient approach for the detection of axlebox bearing raceway defects. Consequently, this research contributes significantly to the field of high-speed train systems and paves the way for enhanced safety and maintenance practices.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12050142\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12050142","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

轴箱轴承套圈滚道缺陷是铁路车轮中不可避免的常见现象。它不仅会导致表面损坏,还会构成进一步损坏和退化的潜在威胁,从而增加与运行安全和维护成本相关的风险。因此,必须及早检测滚道缺陷,以减少安全隐患并降低维护成本。在本研究中,重点是研究基于振动的检测技术在识别高速列车轮对轴承系统中滚道缺陷方面的有效性。为此,我们开发了一个动态模型,该模型能准确反映车辆与轨道之间的耦合动态。该模型包含各种动态因素,如牵引传动、齿轮传动和轨道几何形状的不规则性。通过使用综合动态模型,可以精确计算出轮轴箱的动态响应。所提出的方法主要围绕在时域和频域分析由滚道缺陷引起的轴箱垂直振动。此外,还使用开发的带通滤波器进行包络分析。这项研究获得的结果清楚地表明,在一个更加逼真的车辆模型中,滚道缺陷的检测是成功的,从而为轴箱轴承滚道缺陷的检测提供了一种有效的方法。因此,这项研究为高速列车系统领域做出了重大贡献,并为加强安全性和维护实践铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibration-Based Detection of Axlebox Bearing Considering Inner and Outer Ring Raceway Defects
The occurrence of an axlebox bearing ring raceway defect is an inevitable and commonly observed phenomenon in railway wheels. It not only leads to surface damage but also poses the potential threat of further damage and degradation, thereby increasing the risks associated with running safety and maintenance costs. Hence, it becomes imperative to detect raceway defects at an early stage to mitigate safety hazards and reduce maintenance efforts. In this study, the focus lies in investigating the effectiveness of vibration-based detection techniques for identifying raceway defects in high-speed train axlebox bearing systems. To achieve this, a dynamic model that accurately represents the coupling dynamics between the vehicle and the track is developed. This model incorporates various dynamic factors, such as traction transmission, gear transmission, and track geometry irregularities. By using the comprehensive dynamic model, the dynamic responses of the axlebox can be accurately calculated. The proposed methodology primarily revolves around analysing the vertical vibrations of the axlebox caused by raceway defects in both the time and frequency domains. Additionally, an envelope analysis using a developed band-pass filter is also employed. The results obtained from this study clearly demonstrate the successful detection of raceway defects in a more realistic vehicle model, thereby providing an efficient approach for the detection of axlebox bearing raceway defects. Consequently, this research contributes significantly to the field of high-speed train systems and paves the way for enhanced safety and maintenance practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Theoretical and Experimental Study of Flexible Structure Tilting Pad Bearings Considering Deformation Comparative Study on the Lubrication of Ti3C2TX MXene and Graphene Oxide Nanofluids for Titanium Alloys Study of Lubrication Performance and Churning Loss under Mixed Lubrication Mode in Gearbox Investigation on the Static Performance of Surface-Throttling Frictionless Pneumatic Cylinder through Finite Element Method Numerical Simulations and Experimental Validation of Squeeze Film Dampers for Aircraft Jet Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1