用于抗菌伤口敷料的光降解纳米复合水凝胶。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Journal of Materials Chemistry B Pub Date : 2024-04-23 DOI:10.1039/D4TB00222A
Changhao Fang, Qiming Shen, Yingnan Zhang, Karen Kanemaru and Michael J. Serpe
{"title":"用于抗菌伤口敷料的光降解纳米复合水凝胶。","authors":"Changhao Fang, Qiming Shen, Yingnan Zhang, Karen Kanemaru and Michael J. Serpe","doi":"10.1039/D4TB00222A","DOIUrl":null,"url":null,"abstract":"<p >Skin injuries infected by bacteria can cause life-threatening human diseases if not treated properly. In this work, we developed a light-degradable nanocomposite hydrogel to achieve both controlled antibiotic delivery and hydrogel degradation using light as the sole stimulus. Specifically, we incorporated triclosan-loaded, poly(<em>N</em>-isopropylacrylamide)-based nanogels (TCS-NGs) that exhibited potent antibacterial efficacy, into a light-degradable poly (ethylene glycol) (PEG)-based hydrogel matrix <em>via</em> simple physical entrapment method. Upon exposure to 365 nm light, the hydrogel matrix could rapidly degrade, which subsequently released the entrapped TCS-NGs into the surrounding environment. Our results demonstrated that TCS-NGs released from light-degradable nanocomposite hydrogels still possessed remarkable antibacterial efficacy by inhibiting the growth of <em>Staphylococcus aureus</em> both in solution (a fivefold reduction in optical density compared to the blank control) and on bacteria-infected porcine skins (a fivefold reduction in colony-forming units compared to the blank control). Finally, using an alamarBlue assay on human dermal fibroblasts, we determined that each component of the nanocomposite hydrogel exhibited excellent biocompatibility (&gt;90% cell viability) and would not cause significant cytotoxicity. Overall, the fabricated light-degradable nanocomposite hydrogels could serve as novel material for antibacterial wound dressing applications.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-degradable nanocomposite hydrogels for antibacterial wound dressing applications†\",\"authors\":\"Changhao Fang, Qiming Shen, Yingnan Zhang, Karen Kanemaru and Michael J. Serpe\",\"doi\":\"10.1039/D4TB00222A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Skin injuries infected by bacteria can cause life-threatening human diseases if not treated properly. In this work, we developed a light-degradable nanocomposite hydrogel to achieve both controlled antibiotic delivery and hydrogel degradation using light as the sole stimulus. Specifically, we incorporated triclosan-loaded, poly(<em>N</em>-isopropylacrylamide)-based nanogels (TCS-NGs) that exhibited potent antibacterial efficacy, into a light-degradable poly (ethylene glycol) (PEG)-based hydrogel matrix <em>via</em> simple physical entrapment method. Upon exposure to 365 nm light, the hydrogel matrix could rapidly degrade, which subsequently released the entrapped TCS-NGs into the surrounding environment. Our results demonstrated that TCS-NGs released from light-degradable nanocomposite hydrogels still possessed remarkable antibacterial efficacy by inhibiting the growth of <em>Staphylococcus aureus</em> both in solution (a fivefold reduction in optical density compared to the blank control) and on bacteria-infected porcine skins (a fivefold reduction in colony-forming units compared to the blank control). Finally, using an alamarBlue assay on human dermal fibroblasts, we determined that each component of the nanocomposite hydrogel exhibited excellent biocompatibility (&gt;90% cell viability) and would not cause significant cytotoxicity. Overall, the fabricated light-degradable nanocomposite hydrogels could serve as novel material for antibacterial wound dressing applications.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00222a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00222a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

受细菌感染的皮肤损伤如果处理不当,会引发危及人类生命的疾病。在这项研究中,我们开发了一种光降解纳米复合水凝胶,利用光作为唯一的刺激,实现了抗生素的可控递送和水凝胶降解。具体来说,我们通过简单的物理夹持方法,将负载三氯生、聚(N-异丙基丙烯酰胺)基纳米凝胶(TCS-NGs)融入光降解聚(乙二醇)(PEG)基水凝胶基质中。在 365 纳米波长的光照下,水凝胶基质可迅速降解,随后将夹带的 TCS-NGs 释放到周围环境中。我们的研究结果表明,从光降解纳米复合水凝胶中释放出的 TCS-NGs 仍具有显著的抗菌功效,能抑制金黄色葡萄球菌在溶液中的生长(与空白对照相比,光密度降低了五倍),也能抑制细菌感染的猪皮上的生长(与空白对照相比,菌落形成单位降低了五倍)。最后,通过对人真皮成纤维细胞进行氨蓝检测,我们确定纳米复合水凝胶的每种成分都具有良好的生物相容性(细胞存活率大于 90%),不会产生明显的细胞毒性。总之,所制备的光降解纳米复合水凝胶可作为抗菌伤口敷料的新型材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light-degradable nanocomposite hydrogels for antibacterial wound dressing applications†

Skin injuries infected by bacteria can cause life-threatening human diseases if not treated properly. In this work, we developed a light-degradable nanocomposite hydrogel to achieve both controlled antibiotic delivery and hydrogel degradation using light as the sole stimulus. Specifically, we incorporated triclosan-loaded, poly(N-isopropylacrylamide)-based nanogels (TCS-NGs) that exhibited potent antibacterial efficacy, into a light-degradable poly (ethylene glycol) (PEG)-based hydrogel matrix via simple physical entrapment method. Upon exposure to 365 nm light, the hydrogel matrix could rapidly degrade, which subsequently released the entrapped TCS-NGs into the surrounding environment. Our results demonstrated that TCS-NGs released from light-degradable nanocomposite hydrogels still possessed remarkable antibacterial efficacy by inhibiting the growth of Staphylococcus aureus both in solution (a fivefold reduction in optical density compared to the blank control) and on bacteria-infected porcine skins (a fivefold reduction in colony-forming units compared to the blank control). Finally, using an alamarBlue assay on human dermal fibroblasts, we determined that each component of the nanocomposite hydrogel exhibited excellent biocompatibility (>90% cell viability) and would not cause significant cytotoxicity. Overall, the fabricated light-degradable nanocomposite hydrogels could serve as novel material for antibacterial wound dressing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
期刊最新文献
Back cover Back cover Back cover Injectable thermogel constructed from self-assembled polyurethane micelle networks for 3D cell culture and wound treatment† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1