欧空局微振动测量系统的虚拟测试模拟环境

Leonardo Peri, Michelino Pagano, Lorenzo Dozio, Pietro Nali
{"title":"欧空局微振动测量系统的虚拟测试模拟环境","authors":"Leonardo Peri,&nbsp;Michelino Pagano,&nbsp;Lorenzo Dozio,&nbsp;Pietro Nali","doi":"10.1007/s42496-024-00216-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the evaluation of various model reduction techniques as possible candidates for building a virtual testing simulation environment of the ESA’s Micro Vibrations Measurement System (MVMS). The resulting tool would represent a key enabling technology for optimization of the tests to be carried out by the facility for the characterization of potential microvibration sources and environments. The present investigation involves both component mode synthesis and state-space based methods. In particular, an enhanced version of the Craig–Bampton (CB) method with substructuring and a hybrid two-stage approach involving a preliminary CB reduction step followed by a balanced truncation are presented and discussed. The number of dominant vibration modes to be retained in each substructure is determined according to the effective interface mass criterion. The different model reduction methods are compared in terms of performance and computational effort. It is shown that some preferable techniques can be identified for the specific purposes of the virtual testing environment of the MVMS.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"104 1","pages":"3 - 13"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Virtual Testing Simulation Environment for the ESA’s Micro Vibrations Measurement System\",\"authors\":\"Leonardo Peri,&nbsp;Michelino Pagano,&nbsp;Lorenzo Dozio,&nbsp;Pietro Nali\",\"doi\":\"10.1007/s42496-024-00216-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the evaluation of various model reduction techniques as possible candidates for building a virtual testing simulation environment of the ESA’s Micro Vibrations Measurement System (MVMS). The resulting tool would represent a key enabling technology for optimization of the tests to be carried out by the facility for the characterization of potential microvibration sources and environments. The present investigation involves both component mode synthesis and state-space based methods. In particular, an enhanced version of the Craig–Bampton (CB) method with substructuring and a hybrid two-stage approach involving a preliminary CB reduction step followed by a balanced truncation are presented and discussed. The number of dominant vibration modes to be retained in each substructure is determined according to the effective interface mass criterion. The different model reduction methods are compared in terms of performance and computational effort. It is shown that some preferable techniques can be identified for the specific purposes of the virtual testing environment of the MVMS.</p></div>\",\"PeriodicalId\":100054,\"journal\":{\"name\":\"Aerotecnica Missili & Spazio\",\"volume\":\"104 1\",\"pages\":\"3 - 13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerotecnica Missili & Spazio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42496-024-00216-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-024-00216-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Virtual Testing Simulation Environment for the ESA’s Micro Vibrations Measurement System

This paper presents the evaluation of various model reduction techniques as possible candidates for building a virtual testing simulation environment of the ESA’s Micro Vibrations Measurement System (MVMS). The resulting tool would represent a key enabling technology for optimization of the tests to be carried out by the facility for the characterization of potential microvibration sources and environments. The present investigation involves both component mode synthesis and state-space based methods. In particular, an enhanced version of the Craig–Bampton (CB) method with substructuring and a hybrid two-stage approach involving a preliminary CB reduction step followed by a balanced truncation are presented and discussed. The number of dominant vibration modes to be retained in each substructure is determined according to the effective interface mass criterion. The different model reduction methods are compared in terms of performance and computational effort. It is shown that some preferable techniques can be identified for the specific purposes of the virtual testing environment of the MVMS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AIDAA News #25 The Future of Aerospace Research: An Overview Preface AIDAA News #24 Considerations for a Spaceport in Venezuela: A Developing Country
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1