{"title":"基于视觉的钢铁产品表面缺陷检测和分类方法概览","authors":"A. A. M. S. Ibrahim, J. Tapamo","doi":"10.3390/informatics11020025","DOIUrl":null,"url":null,"abstract":"In the competitive landscape of steel-strip production, ensuring the high quality of steel surfaces is paramount. Traditionally, human visual inspection has been the primary method for detecting defects, but it suffers from limitations such as reliability, cost, processing time, and accuracy. Visual inspection technologies, particularly automation techniques, have been introduced to address these shortcomings. This paper conducts a thorough survey examining vision-based methodologies related to detecting and classifying surface defects on steel products. These methodologies encompass statistical, spectral, texture segmentation based methods, and machine learning-driven approaches. Furthermore, various classification algorithms, categorized into supervised, semi-supervised, and unsupervised techniques, are discussed. Additionally, the paper outlines the future direction of research focus.","PeriodicalId":37100,"journal":{"name":"Informatics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Vision-Based Methods for Surface Defects’ Detection and Classification in Steel Products\",\"authors\":\"A. A. M. S. Ibrahim, J. Tapamo\",\"doi\":\"10.3390/informatics11020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the competitive landscape of steel-strip production, ensuring the high quality of steel surfaces is paramount. Traditionally, human visual inspection has been the primary method for detecting defects, but it suffers from limitations such as reliability, cost, processing time, and accuracy. Visual inspection technologies, particularly automation techniques, have been introduced to address these shortcomings. This paper conducts a thorough survey examining vision-based methodologies related to detecting and classifying surface defects on steel products. These methodologies encompass statistical, spectral, texture segmentation based methods, and machine learning-driven approaches. Furthermore, various classification algorithms, categorized into supervised, semi-supervised, and unsupervised techniques, are discussed. Additionally, the paper outlines the future direction of research focus.\",\"PeriodicalId\":37100,\"journal\":{\"name\":\"Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/informatics11020025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/informatics11020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Survey of Vision-Based Methods for Surface Defects’ Detection and Classification in Steel Products
In the competitive landscape of steel-strip production, ensuring the high quality of steel surfaces is paramount. Traditionally, human visual inspection has been the primary method for detecting defects, but it suffers from limitations such as reliability, cost, processing time, and accuracy. Visual inspection technologies, particularly automation techniques, have been introduced to address these shortcomings. This paper conducts a thorough survey examining vision-based methodologies related to detecting and classifying surface defects on steel products. These methodologies encompass statistical, spectral, texture segmentation based methods, and machine learning-driven approaches. Furthermore, various classification algorithms, categorized into supervised, semi-supervised, and unsupervised techniques, are discussed. Additionally, the paper outlines the future direction of research focus.