气候变暖对青藏高原高寒草甸生态系统中三种植物氮磷比例和吸收的影响

Lang Zheng, Xuan Cao, Zhiyong Yang, Hui Wang, Qiqi Zang, Wenchen Song, Miaogen Shen, Chunwang Xiao
{"title":"气候变暖对青藏高原高寒草甸生态系统中三种植物氮磷比例和吸收的影响","authors":"Lang Zheng, Xuan Cao, Zhiyong Yang, Hui Wang, Qiqi Zang, Wenchen Song, Miaogen Shen, Chunwang Xiao","doi":"10.1093/jpe/rtae032","DOIUrl":null,"url":null,"abstract":"\n Global climate change is expected to have a significant impact on ecosystems worldwide, especially for alpine meadow ecosystems which are considered as one of the most vulnerable components. However, the effects of global warming on the plant Nitrogen-Phosphorus stoichiometry and resorption in alpine meadow ecosystems remain unclear. Therefore, to investigate the plant Nitrogen-Phosphorus stoichiometry and resorption in alpine meadow ecosystems on the Qinghai-Tibet Plateau, we conducted an artificial warming study using open-top chambers (OTCs) over the 3-years of warming period. We selected three dominant species, four height types of OTCs (0.4 m, 0.6 m, 0.8 m and 1 m) and four warming methods (year-round warming, winter warming, summer-autumn-winter warming and spring-summer-autumn warming in the experiment) in this experiment. In our study, soil temperature significantly increased with increasing the height of OCTs under the different warming methods. Kobresia pygmaea presented an increase in nitrogen (N) limitation and Kobresia humilis presented an increase in phosphorus (P) limitation with increasing temperature, while Potentilla saundersiana was insensitive to temperature changes in terms of nitrogen and phosphorus limitations. Both nitrogen resorption efficiency (NRE):phosphorus resorption efficiency (PRE) and N:P trends in response to rising temperatures were the same direction. The differential responses of chemical stoichiometry of the three species to warming were observed, reflecting that the responses of nitrogen and phosphorus limitations to warming are multifaceted, and the grassland ecosystems may exhibit a certain degree of self-regulatory capability. Our results show that using chemical dosage indicators of a single dominant species to represent the nitrogen and phosphorus limitations of the entire ecosystem is inaccurate, and using N:P to reflect the nutritional limitations might have been somewhat misjudged in the context of global warming.","PeriodicalId":503671,"journal":{"name":"Journal of Plant Ecology","volume":"131 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of warming conditions on plant Nitrogen-Phosphorus stoichiometry and resorption of three plant species in alpine meadow ecosystems on the Tibetan Plateau\",\"authors\":\"Lang Zheng, Xuan Cao, Zhiyong Yang, Hui Wang, Qiqi Zang, Wenchen Song, Miaogen Shen, Chunwang Xiao\",\"doi\":\"10.1093/jpe/rtae032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Global climate change is expected to have a significant impact on ecosystems worldwide, especially for alpine meadow ecosystems which are considered as one of the most vulnerable components. However, the effects of global warming on the plant Nitrogen-Phosphorus stoichiometry and resorption in alpine meadow ecosystems remain unclear. Therefore, to investigate the plant Nitrogen-Phosphorus stoichiometry and resorption in alpine meadow ecosystems on the Qinghai-Tibet Plateau, we conducted an artificial warming study using open-top chambers (OTCs) over the 3-years of warming period. We selected three dominant species, four height types of OTCs (0.4 m, 0.6 m, 0.8 m and 1 m) and four warming methods (year-round warming, winter warming, summer-autumn-winter warming and spring-summer-autumn warming in the experiment) in this experiment. In our study, soil temperature significantly increased with increasing the height of OCTs under the different warming methods. Kobresia pygmaea presented an increase in nitrogen (N) limitation and Kobresia humilis presented an increase in phosphorus (P) limitation with increasing temperature, while Potentilla saundersiana was insensitive to temperature changes in terms of nitrogen and phosphorus limitations. Both nitrogen resorption efficiency (NRE):phosphorus resorption efficiency (PRE) and N:P trends in response to rising temperatures were the same direction. The differential responses of chemical stoichiometry of the three species to warming were observed, reflecting that the responses of nitrogen and phosphorus limitations to warming are multifaceted, and the grassland ecosystems may exhibit a certain degree of self-regulatory capability. Our results show that using chemical dosage indicators of a single dominant species to represent the nitrogen and phosphorus limitations of the entire ecosystem is inaccurate, and using N:P to reflect the nutritional limitations might have been somewhat misjudged in the context of global warming.\",\"PeriodicalId\":503671,\"journal\":{\"name\":\"Journal of Plant Ecology\",\"volume\":\"131 27\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtae032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jpe/rtae032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球气候变化预计将对世界各地的生态系统产生重大影响,尤其是被视为最脆弱的生态系统之一的高山草甸生态系统。然而,全球变暖对高山草甸生态系统中植物氮磷平衡和吸收的影响仍不清楚。因此,为了研究青藏高原高寒草甸生态系统中植物氮磷的化学计量和重吸收,我们使用开顶室(OTC)进行了为期3年的人工增温研究。我们选择了三种优势物种、四种高度类型的 OTC(0.4 米、0.6 米、0.8 米和 1 米)和四种加温方式(全年加温、冬季加温、夏秋冬季加温和春夏秋季加温)进行实验。在我们的研究中,在不同的加温方法下,土壤温度随着华侨城高度的增加而明显升高。随着温度的升高,Kobresia pygmaea 的氮限制增加,Kobresia humilis 的磷限制增加,而 Potentilla saundersiana 的氮和磷限制对温度变化不敏感。氮吸收效率(NRE):磷吸收效率(PRE)和氮:磷对温度升高的反应趋势是一致的。观察到三种物种的化学计量对升温的不同响应,反映出氮磷限制对升温的响应是多方面的,草原生态系统可能表现出一定程度的自我调节能力。我们的研究结果表明,用单一优势物种的化学剂量指标来代表整个生态系统的氮磷限制是不准确的,而用氮磷比来反映营养限制在全球变暖的背景下可能存在一定的误判。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of warming conditions on plant Nitrogen-Phosphorus stoichiometry and resorption of three plant species in alpine meadow ecosystems on the Tibetan Plateau
Global climate change is expected to have a significant impact on ecosystems worldwide, especially for alpine meadow ecosystems which are considered as one of the most vulnerable components. However, the effects of global warming on the plant Nitrogen-Phosphorus stoichiometry and resorption in alpine meadow ecosystems remain unclear. Therefore, to investigate the plant Nitrogen-Phosphorus stoichiometry and resorption in alpine meadow ecosystems on the Qinghai-Tibet Plateau, we conducted an artificial warming study using open-top chambers (OTCs) over the 3-years of warming period. We selected three dominant species, four height types of OTCs (0.4 m, 0.6 m, 0.8 m and 1 m) and four warming methods (year-round warming, winter warming, summer-autumn-winter warming and spring-summer-autumn warming in the experiment) in this experiment. In our study, soil temperature significantly increased with increasing the height of OCTs under the different warming methods. Kobresia pygmaea presented an increase in nitrogen (N) limitation and Kobresia humilis presented an increase in phosphorus (P) limitation with increasing temperature, while Potentilla saundersiana was insensitive to temperature changes in terms of nitrogen and phosphorus limitations. Both nitrogen resorption efficiency (NRE):phosphorus resorption efficiency (PRE) and N:P trends in response to rising temperatures were the same direction. The differential responses of chemical stoichiometry of the three species to warming were observed, reflecting that the responses of nitrogen and phosphorus limitations to warming are multifaceted, and the grassland ecosystems may exhibit a certain degree of self-regulatory capability. Our results show that using chemical dosage indicators of a single dominant species to represent the nitrogen and phosphorus limitations of the entire ecosystem is inaccurate, and using N:P to reflect the nutritional limitations might have been somewhat misjudged in the context of global warming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manipulated Microtopography Alters Plant Community Development in Fragile Farm-Pastoral Transition Zone Increasing biochar diversity promotes impacts of plant diversity on remediating cadmium in the soil Effects of leguminous green manure-crop rotation on soil enzyme activities and stoichiometry Sex-specific phosphorus (P)-use and -acquisition in dioecious Populus euphratica as affected by soil moisture levels Differential phenological responses to temperature among different stages of spring vegetation green-up
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1