计算病理学:一个不断发展的概念。

IF 3.8 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY Clinical chemistry and laboratory medicine Pub Date : 2024-04-23 DOI:10.1515/cclm-2023-1124
Ioannis Prassas, Blaise Clarke, Timothy Youssef, Juliana Phlamon, Lampros Dimitrakopoulos, Andrew Rofaeil, George M Yousef
{"title":"计算病理学:一个不断发展的概念。","authors":"Ioannis Prassas, Blaise Clarke, Timothy Youssef, Juliana Phlamon, Lampros Dimitrakopoulos, Andrew Rofaeil, George M Yousef","doi":"10.1515/cclm-2023-1124","DOIUrl":null,"url":null,"abstract":"The initial enthusiasm about computational pathology (CP) and artificial intelligence (AI) was that they will replace pathologists entirely on the way to fully automated diagnostics. It is becoming clear that currently this is not the immediate model to pursue. On top of the legal and regulatory complexities surrounding its implementation, the majority of tested machine learning (ML)-based predictive algorithms do not display the exquisite performance needed to render them unequivocal, standalone decision makers for matters with direct implications to human health. We are thus moving into a different model of \"computer-assisted diagnostics\", where AI is there to provide support, rather than replacing, the pathologist. Herein we focus on the practical aspects of CP, from a pathologist perspective. There is a wide range of potential applications where CP can enhance precision of pathology diagnosis, tailor prognostic and predictive information, as well as save time. There are, however, a number of potential limitations for CP that currently hinder their wider adoption in the clinical setting. We address the key necessary steps towards clinical implementation of computational pathology, discuss the significant obstacles that hinders its adoption in the clinical context and summarize some proposed solutions. We conclude that the advancement of CP in the clinic is a promising resource-intensive endeavour that requires broad and inclusive collaborations between academia, industry, and regulatory bodies.","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational pathology: an evolving concept.\",\"authors\":\"Ioannis Prassas, Blaise Clarke, Timothy Youssef, Juliana Phlamon, Lampros Dimitrakopoulos, Andrew Rofaeil, George M Yousef\",\"doi\":\"10.1515/cclm-2023-1124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The initial enthusiasm about computational pathology (CP) and artificial intelligence (AI) was that they will replace pathologists entirely on the way to fully automated diagnostics. It is becoming clear that currently this is not the immediate model to pursue. On top of the legal and regulatory complexities surrounding its implementation, the majority of tested machine learning (ML)-based predictive algorithms do not display the exquisite performance needed to render them unequivocal, standalone decision makers for matters with direct implications to human health. We are thus moving into a different model of \\\"computer-assisted diagnostics\\\", where AI is there to provide support, rather than replacing, the pathologist. Herein we focus on the practical aspects of CP, from a pathologist perspective. There is a wide range of potential applications where CP can enhance precision of pathology diagnosis, tailor prognostic and predictive information, as well as save time. There are, however, a number of potential limitations for CP that currently hinder their wider adoption in the clinical setting. We address the key necessary steps towards clinical implementation of computational pathology, discuss the significant obstacles that hinders its adoption in the clinical context and summarize some proposed solutions. We conclude that the advancement of CP in the clinic is a promising resource-intensive endeavour that requires broad and inclusive collaborations between academia, industry, and regulatory bodies.\",\"PeriodicalId\":10390,\"journal\":{\"name\":\"Clinical chemistry and laboratory medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry and laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2023-1124\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2023-1124","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们最初对计算病理学(CP)和人工智能(AI)的热情在于,它们将在实现全自动诊断的道路上完全取代病理学家。但现在看来,这显然不是当务之急。除了围绕其实施的法律和监管方面的复杂性之外,大多数经过测试的基于机器学习(ML)的预测算法并没有显示出所需的精湛性能,使其成为对人类健康有直接影响的问题的明确、独立的决策者。因此,我们正在进入一种不同的 "计算机辅助诊断 "模式,即人工智能为病理学家提供支持,而不是取代病理学家。在这里,我们从病理学家的角度出发,重点讨论计算机辅助诊断的实际问题。计算机辅助病理诊断可以提高病理诊断的精确度,提供预后和预测信息,并节省时间,其潜在应用范围非常广泛。然而,目前 CP 存在一些潜在的局限性,阻碍了其在临床环境中的广泛应用。我们探讨了计算病理学临床应用的关键必要步骤,讨论了阻碍其临床应用的重大障碍,并总结了一些建议的解决方案。我们的结论是,将计算病理学应用于临床是一项前景广阔的资源密集型工作,需要学术界、业界和监管机构之间广泛而包容的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational pathology: an evolving concept.
The initial enthusiasm about computational pathology (CP) and artificial intelligence (AI) was that they will replace pathologists entirely on the way to fully automated diagnostics. It is becoming clear that currently this is not the immediate model to pursue. On top of the legal and regulatory complexities surrounding its implementation, the majority of tested machine learning (ML)-based predictive algorithms do not display the exquisite performance needed to render them unequivocal, standalone decision makers for matters with direct implications to human health. We are thus moving into a different model of "computer-assisted diagnostics", where AI is there to provide support, rather than replacing, the pathologist. Herein we focus on the practical aspects of CP, from a pathologist perspective. There is a wide range of potential applications where CP can enhance precision of pathology diagnosis, tailor prognostic and predictive information, as well as save time. There are, however, a number of potential limitations for CP that currently hinder their wider adoption in the clinical setting. We address the key necessary steps towards clinical implementation of computational pathology, discuss the significant obstacles that hinders its adoption in the clinical context and summarize some proposed solutions. We conclude that the advancement of CP in the clinic is a promising resource-intensive endeavour that requires broad and inclusive collaborations between academia, industry, and regulatory bodies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical chemistry and laboratory medicine
Clinical chemistry and laboratory medicine 医学-医学实验技术
CiteScore
11.30
自引率
16.20%
发文量
306
审稿时长
3 months
期刊介绍: Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically. CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France). Topics: - clinical biochemistry - clinical genomics and molecular biology - clinical haematology and coagulation - clinical immunology and autoimmunity - clinical microbiology - drug monitoring and analysis - evaluation of diagnostic biomarkers - disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes) - new reagents, instrumentation and technologies - new methodologies - reference materials and methods - reference values and decision limits - quality and safety in laboratory medicine - translational laboratory medicine - clinical metrology Follow @cclm_degruyter on Twitter!
期刊最新文献
A vision to the future: value-based laboratory medicine Inaccuracy definition of Bence Jones proteinuria in the EFLM Urinalysis Guideline 2023. Construction of platelet count-optical method reflex test rules using Micro-RBC#, Macro-RBC%, "PLT clumps?" flag, and "PLT abnormal histogram" flag on the Mindray BC-6800plus hematology analyzer in clinical practice. Why is single sample rule out of non-ST elevation myocardial infarction using high-sensitivity cardiac troponin T safe when analytical imprecision is so high? A joint statistical and clinical demonstration. Circulating tumor DNA measurement: a new pillar of medical oncology?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1