基于自耦合分数阶 PID 的抗振动张力控制研究

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Transactions of the Institute of Measurement and Control Pub Date : 2024-04-23 DOI:10.1177/01423312241239113
Jianguo Liang, Yujie Duan, Xinyu Wen, Yinan Zhao, Haifeng Gao, Xiaodong Zhao, Uwayezu Emmanuel
{"title":"基于自耦合分数阶 PID 的抗振动张力控制研究","authors":"Jianguo Liang, Yujie Duan, Xinyu Wen, Yinan Zhao, Haifeng Gao, Xiaodong Zhao, Uwayezu Emmanuel","doi":"10.1177/01423312241239113","DOIUrl":null,"url":null,"abstract":"Constant tension control is essential for excellent winding quality. However, the system’s nonlinearity and external disturbance make it challenging to guarantee tension control accuracy with conventional control methods. Thus, a self-coupling fractional-order proportional–integral–derivative (SC-FOPID) control scheme combined with a disturbance observer is proposed to enhance the system’s anti-vibration performance. The fractional-order dynamic model of the unwinding roller and swing rod is established by analyzing the tension mechanism. Based on deliberate analysis and calculation, the vibration shock signal can be decomposed into periodic sinusoidal disturbance and bounded noise approximately. As such, an output-based anti-vibration method using a fractional-order model can be realized, where a back recursive disturbance observer is designed to estimate the periodic component. Simultaneously, the bounded noise exhibited in vibration can be attenuated by the SC-FOPID controller. The stability is guaranteed using the Lyapunov theorem, and the simulation results show the proposed method’s effectiveness in improving the tension control performance.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on anti-vibration tension control based on self-coupling fractional-order PID\",\"authors\":\"Jianguo Liang, Yujie Duan, Xinyu Wen, Yinan Zhao, Haifeng Gao, Xiaodong Zhao, Uwayezu Emmanuel\",\"doi\":\"10.1177/01423312241239113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constant tension control is essential for excellent winding quality. However, the system’s nonlinearity and external disturbance make it challenging to guarantee tension control accuracy with conventional control methods. Thus, a self-coupling fractional-order proportional–integral–derivative (SC-FOPID) control scheme combined with a disturbance observer is proposed to enhance the system’s anti-vibration performance. The fractional-order dynamic model of the unwinding roller and swing rod is established by analyzing the tension mechanism. Based on deliberate analysis and calculation, the vibration shock signal can be decomposed into periodic sinusoidal disturbance and bounded noise approximately. As such, an output-based anti-vibration method using a fractional-order model can be realized, where a back recursive disturbance observer is designed to estimate the periodic component. Simultaneously, the bounded noise exhibited in vibration can be attenuated by the SC-FOPID controller. The stability is guaranteed using the Lyapunov theorem, and the simulation results show the proposed method’s effectiveness in improving the tension control performance.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312241239113\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312241239113","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

恒定的张力控制对实现出色的卷绕质量至关重要。然而,系统的非线性和外部干扰使得传统控制方法难以保证张力控制精度。因此,我们提出了一种与干扰观测器相结合的自耦合分数阶比例-积分-导数(SC-FOPID)控制方案,以提高系统的抗振性能。通过分析张力机构,建立了放卷辊和摆动杆的分数阶动态模型。基于缜密的分析和计算,振动冲击信号可近似分解为周期性正弦扰动和有界噪声。因此,可以使用分数阶模型实现基于输出的防振方法,其中设计了一个反向递归干扰观测器来估计周期分量。同时,SC-FOPID 控制器可以减弱振动中的有界噪声。利用 Lyapunov 定理保证了稳定性,仿真结果表明所提出的方法能有效改善张力控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on anti-vibration tension control based on self-coupling fractional-order PID
Constant tension control is essential for excellent winding quality. However, the system’s nonlinearity and external disturbance make it challenging to guarantee tension control accuracy with conventional control methods. Thus, a self-coupling fractional-order proportional–integral–derivative (SC-FOPID) control scheme combined with a disturbance observer is proposed to enhance the system’s anti-vibration performance. The fractional-order dynamic model of the unwinding roller and swing rod is established by analyzing the tension mechanism. Based on deliberate analysis and calculation, the vibration shock signal can be decomposed into periodic sinusoidal disturbance and bounded noise approximately. As such, an output-based anti-vibration method using a fractional-order model can be realized, where a back recursive disturbance observer is designed to estimate the periodic component. Simultaneously, the bounded noise exhibited in vibration can be attenuated by the SC-FOPID controller. The stability is guaranteed using the Lyapunov theorem, and the simulation results show the proposed method’s effectiveness in improving the tension control performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
期刊最新文献
Selective feature block and joint IoU loss for object detection A speed coordination control method based on D-S evidence synthesis theory Model Predictive Control based on Long-Term Memory neural network model inversion Improved GNN based on Graph-Transformer: A new framework for rolling mill bearing fault diagnosis Auxiliary variable-based output feedback control for hydraulic servo systems with desired compensation approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1