用真空升华法去除工业粗砷中的锑:热力学与 Ab Initio 分子动力学的结合

Metals Pub Date : 2024-04-23 DOI:10.3390/met14050490
Zibin Zuo, Mengping Duan, Xinyang Liu, Xiumin Chen, Huan Luo, Tengteng Shi, Xianjun Lei, Yang Tian, Bin Yang, Baoqiang Xu
{"title":"用真空升华法去除工业粗砷中的锑:热力学与 Ab Initio 分子动力学的结合","authors":"Zibin Zuo, Mengping Duan, Xinyang Liu, Xiumin Chen, Huan Luo, Tengteng Shi, Xianjun Lei, Yang Tian, Bin Yang, Baoqiang Xu","doi":"10.3390/met14050490","DOIUrl":null,"url":null,"abstract":"Thermodynamic theory was employed in this study to investigate the feasibility of separating antimony (Sb) from crude arsenic (As) using vacuum sublimation. Ab initio molecular dynamics simulations are used to calculate the structure, stability, and diffusion properties of AsmSbn (m + n ≤ 6) clusters. As4, As3Sb, As2Sb2, and AsSb3 are the possible clusters in this thermodynamic calculation, and the molecular dynamics results confirmed their structural stability and stabilization in the gas phase. As4 had the largest diffusion coefficients, which is the reason it separates from the Sb-containing clusters (As3Sb, As2Sb2, and AsSb3) during gas-phase diffusion and condensation processes. The experimental results show that As vapor was transformed from crystalline to amorphous with increasing subcooling, and the Sb-containing clusters that enter the gas phase were mainly condensed and deposited at the proximal end of the heating zone. Not considering the volatilization rate, the removal rate of Sb in products can reach 99.35% by increasing the condensation disk and expanding the condensation zone; thus, experiments confirmed that industrial crude arsenic can realize deep Sb removal after vacuum sublimation.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"102 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Antimony from Industrial Crude Arsenic by Vacuum Sublimation: Combination of Thermodynamics and Ab Initio Molecular Dynamics\",\"authors\":\"Zibin Zuo, Mengping Duan, Xinyang Liu, Xiumin Chen, Huan Luo, Tengteng Shi, Xianjun Lei, Yang Tian, Bin Yang, Baoqiang Xu\",\"doi\":\"10.3390/met14050490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermodynamic theory was employed in this study to investigate the feasibility of separating antimony (Sb) from crude arsenic (As) using vacuum sublimation. Ab initio molecular dynamics simulations are used to calculate the structure, stability, and diffusion properties of AsmSbn (m + n ≤ 6) clusters. As4, As3Sb, As2Sb2, and AsSb3 are the possible clusters in this thermodynamic calculation, and the molecular dynamics results confirmed their structural stability and stabilization in the gas phase. As4 had the largest diffusion coefficients, which is the reason it separates from the Sb-containing clusters (As3Sb, As2Sb2, and AsSb3) during gas-phase diffusion and condensation processes. The experimental results show that As vapor was transformed from crystalline to amorphous with increasing subcooling, and the Sb-containing clusters that enter the gas phase were mainly condensed and deposited at the proximal end of the heating zone. Not considering the volatilization rate, the removal rate of Sb in products can reach 99.35% by increasing the condensation disk and expanding the condensation zone; thus, experiments confirmed that industrial crude arsenic can realize deep Sb removal after vacuum sublimation.\",\"PeriodicalId\":510812,\"journal\":{\"name\":\"Metals\",\"volume\":\"102 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/met14050490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14050490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用热力学理论研究了利用真空升华从粗砷(As)中分离锑(Sb)的可行性。Ab initio 分子动力学模拟用于计算 AsmSbn(m + n ≤ 6)团簇的结构、稳定性和扩散特性。As4、As3Sb、As2Sb2 和 AsSb3 是此次热力学计算中可能存在的团簇,分子动力学结果证实了它们在气相中的结构稳定性和稳定性。As4 的扩散系数最大,这也是它在气相扩散和凝结过程中与含锑团簇(As3Sb、As2Sb2 和 AsSb3)分离的原因。实验结果表明,随着过冷度的增加,As 蒸汽从晶体转变为无定形,进入气相的含锑簇主要在加热区的近端凝结沉积。在不考虑挥发率的情况下,通过增加冷凝盘和扩大冷凝区,产品中锑的去除率可达 99.35%;因此,实验证实了工业粗砷在真空升华后可实现深度除锑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of Antimony from Industrial Crude Arsenic by Vacuum Sublimation: Combination of Thermodynamics and Ab Initio Molecular Dynamics
Thermodynamic theory was employed in this study to investigate the feasibility of separating antimony (Sb) from crude arsenic (As) using vacuum sublimation. Ab initio molecular dynamics simulations are used to calculate the structure, stability, and diffusion properties of AsmSbn (m + n ≤ 6) clusters. As4, As3Sb, As2Sb2, and AsSb3 are the possible clusters in this thermodynamic calculation, and the molecular dynamics results confirmed their structural stability and stabilization in the gas phase. As4 had the largest diffusion coefficients, which is the reason it separates from the Sb-containing clusters (As3Sb, As2Sb2, and AsSb3) during gas-phase diffusion and condensation processes. The experimental results show that As vapor was transformed from crystalline to amorphous with increasing subcooling, and the Sb-containing clusters that enter the gas phase were mainly condensed and deposited at the proximal end of the heating zone. Not considering the volatilization rate, the removal rate of Sb in products can reach 99.35% by increasing the condensation disk and expanding the condensation zone; thus, experiments confirmed that industrial crude arsenic can realize deep Sb removal after vacuum sublimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Obtention of Suitable Pregnant Leach Solution (PLS) for Copper Solvent Extraction Plants from Copper Concentrate Using Hydrogen Peroxide and Iodine in a Sulfuric Acid–Chloride Medium Influence of CAD/CAM Manufacturing Technique and Implant Abutment Angulation on Loosening of Individual Screw-Retained Implant Crowns A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles Die Casting of Lightweight Thin Fin Heat Sink Using Al-25%Si Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1