结构参数对小口径异形装药射流形成和穿透能力的影响

Mechanics Pub Date : 2024-04-23 DOI:10.5755/j02.mech.32649
Yongjie Xu, Xiaodong Wang, Wenhui XIE, Nana Zheng
{"title":"结构参数对小口径异形装药射流形成和穿透能力的影响","authors":"Yongjie Xu, Xiaodong Wang, Wenhui XIE, Nana Zheng","doi":"10.5755/j02.mech.32649","DOIUrl":null,"url":null,"abstract":"Take small caliber high explosive antitank cartridge as research platform, establish 35mm diameter warhead model. Numerical simulation for the process of shaped charge jet forming and penetrating the target has been done through explosion mechanics analysis software AUTODYN. Effect of liner thickness, cone angle and charging length-diameter ratio on shaped charge jet performance has been analyzed. And the optimal combination of the structural parameters of the shaped charge has been determined by orthogonal optimum design. Results show that optimized shaped charge structure can penetrate 105mm steel target under simulation conditions and the maximum penetration depth of main charge in the explosion test is 100mm, the average value of penetration depth is 86.67mm. The minimum and average of relative error between results of static explosion test and numerical simulation are 4.76% and 17.46% respectively. The research results can provide theoretical and technical support for the optimization design and engineering application of small caliber shaped charge.","PeriodicalId":511970,"journal":{"name":"Mechanics","volume":"91 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Structural Parameters on the Jet Formation and Penetration Capability of Small Caliber Shaped Charges\",\"authors\":\"Yongjie Xu, Xiaodong Wang, Wenhui XIE, Nana Zheng\",\"doi\":\"10.5755/j02.mech.32649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Take small caliber high explosive antitank cartridge as research platform, establish 35mm diameter warhead model. Numerical simulation for the process of shaped charge jet forming and penetrating the target has been done through explosion mechanics analysis software AUTODYN. Effect of liner thickness, cone angle and charging length-diameter ratio on shaped charge jet performance has been analyzed. And the optimal combination of the structural parameters of the shaped charge has been determined by orthogonal optimum design. Results show that optimized shaped charge structure can penetrate 105mm steel target under simulation conditions and the maximum penetration depth of main charge in the explosion test is 100mm, the average value of penetration depth is 86.67mm. The minimum and average of relative error between results of static explosion test and numerical simulation are 4.76% and 17.46% respectively. The research results can provide theoretical and technical support for the optimization design and engineering application of small caliber shaped charge.\",\"PeriodicalId\":511970,\"journal\":{\"name\":\"Mechanics\",\"volume\":\"91 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.mech.32649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.mech.32649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以小口径高爆反坦克弹为研究平台,建立直径 35 毫米的弹头模型。通过爆炸力学分析软件 AUTODYN 对定型装药射流形成和穿透目标的过程进行了数值模拟。分析了衬垫厚度、锥角和装药长径比对定型装药射流性能的影响。并通过正交优化设计确定了定型装药结构参数的最佳组合。结果表明,优化后的异形装药结构在模拟条件下可穿透 105mm 钢靶,爆炸试验中主装药的最大穿透深度为 100mm,穿透深度的平均值为 86.67mm。静爆试验结果与数值模拟结果的最小相对误差为 4.76%,平均相对误差为 17.46%。研究成果可为小口径定型装药的优化设计和工程应用提供理论和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Structural Parameters on the Jet Formation and Penetration Capability of Small Caliber Shaped Charges
Take small caliber high explosive antitank cartridge as research platform, establish 35mm diameter warhead model. Numerical simulation for the process of shaped charge jet forming and penetrating the target has been done through explosion mechanics analysis software AUTODYN. Effect of liner thickness, cone angle and charging length-diameter ratio on shaped charge jet performance has been analyzed. And the optimal combination of the structural parameters of the shaped charge has been determined by orthogonal optimum design. Results show that optimized shaped charge structure can penetrate 105mm steel target under simulation conditions and the maximum penetration depth of main charge in the explosion test is 100mm, the average value of penetration depth is 86.67mm. The minimum and average of relative error between results of static explosion test and numerical simulation are 4.76% and 17.46% respectively. The research results can provide theoretical and technical support for the optimization design and engineering application of small caliber shaped charge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study of Vibration Isolation Using Electromagnetic Damping Vibration Analysis of Porous Functionally Graded Material Truncated Conical Shells in Axial Motion Effects of Weld Heat Input on Mechanical Characteristics of Low Carbon Sheet Steels Research on Complementary Filtered Attitude Solution Method for Quadcopter Based on Double Filter Preprocessing Averaged Heat Fluxes Densities During Condensation and Evaporation of a Water Droplet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1