Yuze Liu, Weihong Wu, Ying Wang, Jiang Liu, Fan Yang
{"title":"SUDC:同步更新与 SRv6 政策的划分与组合","authors":"Yuze Liu, Weihong Wu, Ying Wang, Jiang Liu, Fan Yang","doi":"10.3390/fi16040140","DOIUrl":null,"url":null,"abstract":"With the expansion of network scale, new network services are emerging. Segment Routing over IPv6 (SRv6) can meet the diverse needs of more new services due to its excellent scalability and programmability. In the intelligent 6-Generation (6G) scenario, frequent SRv6 Traffic Engineering (TE) policy updates will result in the serious problem of unsynchronized updates across routers. Existing solutions suffer from issues such as long update cycles or large data overhead. To optimize the policy-update process, this paper proposes a scheme called Synchronous Update with the Division and Combination of SRv6 Policy (SUDC). Based on the characteristics of the SRv6 TE policy, SUDC divides the policies and introduces Bit Index Explicit Replication IPv6 Encapsulation (BIERv6) to multicast the policy blocks derived from policy dividing. The contribution of this paper is to propose the policy-dividing and combination mechanism and the policy-dividing algorithm. The simulation results demonstrate that compared with the existing schemes, the update overhead and update cycle of SUDC are reduced by 46.71% and 46.6%, respectively. The problem of unsynchronized updates across routers has been further improved.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUDC: Synchronous Update with the Division and Combination of SRv6 Policy\",\"authors\":\"Yuze Liu, Weihong Wu, Ying Wang, Jiang Liu, Fan Yang\",\"doi\":\"10.3390/fi16040140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the expansion of network scale, new network services are emerging. Segment Routing over IPv6 (SRv6) can meet the diverse needs of more new services due to its excellent scalability and programmability. In the intelligent 6-Generation (6G) scenario, frequent SRv6 Traffic Engineering (TE) policy updates will result in the serious problem of unsynchronized updates across routers. Existing solutions suffer from issues such as long update cycles or large data overhead. To optimize the policy-update process, this paper proposes a scheme called Synchronous Update with the Division and Combination of SRv6 Policy (SUDC). Based on the characteristics of the SRv6 TE policy, SUDC divides the policies and introduces Bit Index Explicit Replication IPv6 Encapsulation (BIERv6) to multicast the policy blocks derived from policy dividing. The contribution of this paper is to propose the policy-dividing and combination mechanism and the policy-dividing algorithm. The simulation results demonstrate that compared with the existing schemes, the update overhead and update cycle of SUDC are reduced by 46.71% and 46.6%, respectively. The problem of unsynchronized updates across routers has been further improved.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16040140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
SUDC: Synchronous Update with the Division and Combination of SRv6 Policy
With the expansion of network scale, new network services are emerging. Segment Routing over IPv6 (SRv6) can meet the diverse needs of more new services due to its excellent scalability and programmability. In the intelligent 6-Generation (6G) scenario, frequent SRv6 Traffic Engineering (TE) policy updates will result in the serious problem of unsynchronized updates across routers. Existing solutions suffer from issues such as long update cycles or large data overhead. To optimize the policy-update process, this paper proposes a scheme called Synchronous Update with the Division and Combination of SRv6 Policy (SUDC). Based on the characteristics of the SRv6 TE policy, SUDC divides the policies and introduces Bit Index Explicit Replication IPv6 Encapsulation (BIERv6) to multicast the policy blocks derived from policy dividing. The contribution of this paper is to propose the policy-dividing and combination mechanism and the policy-dividing algorithm. The simulation results demonstrate that compared with the existing schemes, the update overhead and update cycle of SUDC are reduced by 46.71% and 46.6%, respectively. The problem of unsynchronized updates across routers has been further improved.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.