基于 SDN 的多约束和多策略路径跳转主动防御方法

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2024-04-22 DOI:10.3390/fi16040143
Bing Zhang, Hui Li, Shuai Zhang, Jing Sun, Ning Wei, Wenhong Xu, Huan Wang
{"title":"基于 SDN 的多约束和多策略路径跳转主动防御方法","authors":"Bing Zhang, Hui Li, Shuai Zhang, Jing Sun, Ning Wei, Wenhong Xu, Huan Wang","doi":"10.3390/fi16040143","DOIUrl":null,"url":null,"abstract":"Path hopping serves as an active defense mechanism in network security, yet it encounters challenges like a restricted path switching space, the recurrent use of similar paths and vital nodes, a singular triggering mechanism for path switching, and fixed hopping intervals. This paper introduces an active defense method employing multiple constraints and strategies for path hopping. A depth-first search (DFS) traversal is utilized to compute all possible paths between nodes, thereby broadening the path switching space while simplifying path generation complexity. Subsequently, constraints are imposed on residual bandwidth, selection periods, path similitude, and critical nodes to reduce the likelihood of reusing similar paths and crucial nodes. Moreover, two path switching strategies are formulated based on the weights of residual bandwidth and critical nodes, along with the calculation of path switching periods. This facilitates adaptive switching of path hopping paths and intervals, contingent on the network’s residual bandwidth threshold, in response to diverse attack scenarios. Simulation outcomes illustrate that this method, while maintaining normal communication performance, expands the path switching space effectively, safeguards against eavesdropping and link-flooding attacks, enhances path switching diversity and unpredictability, and fortifies the network’s resilience against malicious attacks.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Constraint and Multi-Policy Path Hopping Active Defense Method Based on SDN\",\"authors\":\"Bing Zhang, Hui Li, Shuai Zhang, Jing Sun, Ning Wei, Wenhong Xu, Huan Wang\",\"doi\":\"10.3390/fi16040143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path hopping serves as an active defense mechanism in network security, yet it encounters challenges like a restricted path switching space, the recurrent use of similar paths and vital nodes, a singular triggering mechanism for path switching, and fixed hopping intervals. This paper introduces an active defense method employing multiple constraints and strategies for path hopping. A depth-first search (DFS) traversal is utilized to compute all possible paths between nodes, thereby broadening the path switching space while simplifying path generation complexity. Subsequently, constraints are imposed on residual bandwidth, selection periods, path similitude, and critical nodes to reduce the likelihood of reusing similar paths and crucial nodes. Moreover, two path switching strategies are formulated based on the weights of residual bandwidth and critical nodes, along with the calculation of path switching periods. This facilitates adaptive switching of path hopping paths and intervals, contingent on the network’s residual bandwidth threshold, in response to diverse attack scenarios. Simulation outcomes illustrate that this method, while maintaining normal communication performance, expands the path switching space effectively, safeguards against eavesdropping and link-flooding attacks, enhances path switching diversity and unpredictability, and fortifies the network’s resilience against malicious attacks.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16040143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

路径跳转是网络安全中的一种主动防御机制,但它面临着路径切换空间受限、重复使用相似路径和重要节点、路径切换触发机制单一以及跳转间隔固定等挑战。本文介绍了一种主动防御方法,该方法采用多重约束和路径跳转策略。利用深度优先搜索(DFS)遍历来计算节点之间所有可能的路径,从而在简化路径生成复杂度的同时拓宽了路径切换空间。随后,对剩余带宽、选择周期、路径相似度和关键节点施加约束,以降低重复使用相似路径和关键节点的可能性。此外,根据剩余带宽和关键节点的权重以及路径切换周期的计算,制定了两种路径切换策略。这有助于根据网络的剩余带宽阈值自适应切换跳转路径和间隔,以应对不同的攻击场景。仿真结果表明,这种方法在保持正常通信性能的同时,有效扩展了路径切换空间,防止了窃听和链路淹没攻击,提高了路径切换的多样性和不可预测性,增强了网络抵御恶意攻击的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Constraint and Multi-Policy Path Hopping Active Defense Method Based on SDN
Path hopping serves as an active defense mechanism in network security, yet it encounters challenges like a restricted path switching space, the recurrent use of similar paths and vital nodes, a singular triggering mechanism for path switching, and fixed hopping intervals. This paper introduces an active defense method employing multiple constraints and strategies for path hopping. A depth-first search (DFS) traversal is utilized to compute all possible paths between nodes, thereby broadening the path switching space while simplifying path generation complexity. Subsequently, constraints are imposed on residual bandwidth, selection periods, path similitude, and critical nodes to reduce the likelihood of reusing similar paths and crucial nodes. Moreover, two path switching strategies are formulated based on the weights of residual bandwidth and critical nodes, along with the calculation of path switching periods. This facilitates adaptive switching of path hopping paths and intervals, contingent on the network’s residual bandwidth threshold, in response to diverse attack scenarios. Simulation outcomes illustrate that this method, while maintaining normal communication performance, expands the path switching space effectively, safeguards against eavesdropping and link-flooding attacks, enhances path switching diversity and unpredictability, and fortifies the network’s resilience against malicious attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Testing Stimulus Equivalence in Transformer-Based Agents Dynamic Fashion Video Synthesis from Static Imagery A Survey on Emerging Blockchain Technology Platforms for Securing the Internet of Things Cross-Domain Fake News Detection Using a Prompt-Based Approach Energy Efficiency and Load Optimization in Heterogeneous Networks through Dynamic Sleep Strategies: A Constraint-Based Optimization Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1