Xingcai Zhou, Dehan Kong, Matthew Pietrosanu, Linglong Kong, R. Karunamuni
{"title":"带功能响应的变化系数模型的经验似然 M 近似算法","authors":"Xingcai Zhou, Dehan Kong, Matthew Pietrosanu, Linglong Kong, R. Karunamuni","doi":"10.1111/sjos.12717","DOIUrl":null,"url":null,"abstract":"This work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical likelihood M‐estimation for the varying‐coefficient model with functional response\",\"authors\":\"Xingcai Zhou, Dehan Kong, Matthew Pietrosanu, Linglong Kong, R. Karunamuni\",\"doi\":\"10.1111/sjos.12717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12717\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12717","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
这项工作的灵感来自于功能数据分析文献中的一个空白,尤其是在神经成像方面,即功能模型能否稳健地适应观测内依赖性。为此,我们提出了一种基于广义经验似然的 M-估计器,用于具有功能响应的变化系数模型。我们为模型的函数系数开发了统计推断程序、同步置信区和全局一般线性假设检验。我们的理论结果确定了对数似然比过程的弱收敛性、对数似然比的非参数版本 Wilks' theorem 以及所建议估计器的渐近特性。通过模拟研究,我们证明了所提出的置信集具有接近名义的覆盖概率。在神经影像数据集的实际应用中,我们发现迷你精神状态检查得分和载脂蛋白 E 基因型与分数各向异性有显著的关联,而与性别和年龄的关联只存在于高量级水平。
Empirical likelihood M‐estimation for the varying‐coefficient model with functional response
This work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.