带功能响应的变化系数模型的经验似然 M 近似算法

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2024-04-22 DOI:10.1111/sjos.12717
Xingcai Zhou, Dehan Kong, Matthew Pietrosanu, Linglong Kong, R. Karunamuni
{"title":"带功能响应的变化系数模型的经验似然 M 近似算法","authors":"Xingcai Zhou, Dehan Kong, Matthew Pietrosanu, Linglong Kong, R. Karunamuni","doi":"10.1111/sjos.12717","DOIUrl":null,"url":null,"abstract":"This work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical likelihood M‐estimation for the varying‐coefficient model with functional response\",\"authors\":\"Xingcai Zhou, Dehan Kong, Matthew Pietrosanu, Linglong Kong, R. Karunamuni\",\"doi\":\"10.1111/sjos.12717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12717\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12717","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的灵感来自于功能数据分析文献中的一个空白,尤其是在神经成像方面,即功能模型能否稳健地适应观测内依赖性。为此,我们提出了一种基于广义经验似然的 M-估计器,用于具有功能响应的变化系数模型。我们为模型的函数系数开发了统计推断程序、同步置信区和全局一般线性假设检验。我们的理论结果确定了对数似然比过程的弱收敛性、对数似然比的非参数版本 Wilks' theorem 以及所建议估计器的渐近特性。通过模拟研究,我们证明了所提出的置信集具有接近名义的覆盖概率。在神经影像数据集的实际应用中,我们发现迷你精神状态检查得分和载脂蛋白 E 基因型与分数各向异性有显著的关联,而与性别和年龄的关联只存在于高量级水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical likelihood M‐estimation for the varying‐coefficient model with functional response
This work is motivated by a gap in the functional data analysis literature, particularly in the context of neuroimaging, regarding the ability of functional models to robustly accommodate intra‐observation dependence. In response, we propose an M‐estimator based on generalized empirical likelihood for the varying‐coefficient model with a functional response. We develop statistical inference procedures, simultaneous confidence regions, and a global general linear hypothesis test for the model's functional coefficient. Our theoretical results establish the weak convergence of the log‐likelihood ratio process, a nonparametric version of Wilks' theorem for the log‐likelihood ratio, and asymptotic properties of the proposed estimator. Through a simulation study, we show that the proposed confidence sets have close‐to‐nominal coverage probabilities. In a real‐world application to a neuroimaging dataset, we show that mini‐mental state examination score and apolipoprotein E genotype have significant associations with fractional anisotropy, while associations with gender and age are only present at high quantile levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models Tobit models for count time series On some publications of Sir David Cox Looking back: Selected contributions by C. R. Rao to multivariate analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1