水触发形状记忆聚合物玻璃转变行为的动态相分离模型,实现可编程恢复起始点

Jiabin Shi, Haibao Lu, Tengfei Zheng, Yong-Qing Fu
{"title":"水触发形状记忆聚合物玻璃转变行为的动态相分离模型,实现可编程恢复起始点","authors":"Jiabin Shi, Haibao Lu, Tengfei Zheng, Yong-Qing Fu","doi":"10.1088/1361-6463/ad4162","DOIUrl":null,"url":null,"abstract":"\n Water-triggered shape memory polymers (SMPs) have been extensively studied for biomedical applications due to their advantages of non-thermal actuation capability. However, few studies have been carried out to explore the working principle of shape recovery onset, which is essentially determined by the complex reactions between polymer macromolecules and water molecules. In this study, we developed a phase separation model to describe the dynamic glass transition in water-triggered SMPs. Based on the phase transition theory, dense and dilute phase separations of polymer macromolecules can be achieved when the dynamic diffusions of water molecules in the SMPs undergo dehydration and absorption processes, respectively. Then, the dynamic glass transition is resulted from the dehydration and absorption of water molecules, leading to the dense and dilute phases in the SMPs. Therefore, a free-energy equation has been developed to characterize the recovery onset, in which the mixing free energy and elastic free energy are originated from the Flory-Huggins solution theory and phase separation model, respectively. Moreover, the glass transition and its connection to shape recovery behaviors, i.e., recovery ratio, relaxation time and dynamic mechanical modulus, have also been investigated, according to the Fick’s diffusion law. Meanwhile, onset of programmable recovery has been explained by the dynamic phase separation, based on the transpiration theory and permeability model. Finally, the proposed model is verified using the experimental results reported in the literature. This study is expected to provide a fundamental approach to formulate the constitutive relationship between the dynamic phase separation and programmable recovery onset in the water-triggered SMPs.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic phase separation model for glass transition behavior in water-triggered shape memory polymer towards programmable recovery onset\",\"authors\":\"Jiabin Shi, Haibao Lu, Tengfei Zheng, Yong-Qing Fu\",\"doi\":\"10.1088/1361-6463/ad4162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Water-triggered shape memory polymers (SMPs) have been extensively studied for biomedical applications due to their advantages of non-thermal actuation capability. However, few studies have been carried out to explore the working principle of shape recovery onset, which is essentially determined by the complex reactions between polymer macromolecules and water molecules. In this study, we developed a phase separation model to describe the dynamic glass transition in water-triggered SMPs. Based on the phase transition theory, dense and dilute phase separations of polymer macromolecules can be achieved when the dynamic diffusions of water molecules in the SMPs undergo dehydration and absorption processes, respectively. Then, the dynamic glass transition is resulted from the dehydration and absorption of water molecules, leading to the dense and dilute phases in the SMPs. Therefore, a free-energy equation has been developed to characterize the recovery onset, in which the mixing free energy and elastic free energy are originated from the Flory-Huggins solution theory and phase separation model, respectively. Moreover, the glass transition and its connection to shape recovery behaviors, i.e., recovery ratio, relaxation time and dynamic mechanical modulus, have also been investigated, according to the Fick’s diffusion law. Meanwhile, onset of programmable recovery has been explained by the dynamic phase separation, based on the transpiration theory and permeability model. Finally, the proposed model is verified using the experimental results reported in the literature. This study is expected to provide a fundamental approach to formulate the constitutive relationship between the dynamic phase separation and programmable recovery onset in the water-triggered SMPs.\",\"PeriodicalId\":507822,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad4162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad4162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于水触发形状记忆聚合物(SMPs)具有非热致动能力的优点,人们对其在生物医学领域的应用进行了广泛的研究。然而,很少有研究探讨形状恢复起始的工作原理,其本质是由聚合物大分子与水分子之间的复杂反应决定的。在本研究中,我们建立了一个相分离模型来描述水触发 SMP 的动态玻璃化转变。根据相变理论,当水分子在 SMP 中的动态扩散分别经历脱水和吸水过程时,聚合物大分子可实现致密相分离和稀释相分离。然后,水分子的脱水和吸水过程导致了动态玻璃化转变,从而在 SMP 中形成致密相和稀相。因此,我们建立了一个自由能方程来描述恢复开始的特征,其中混合自由能和弹性自由能分别源自 Flory-Huggins 溶液理论和相分离模型。此外,还根据菲克扩散定律研究了玻璃化转变及其与形状恢复行为的联系,即恢复率、弛豫时间和动态机械模量。同时,根据蒸腾理论和渗透模型,用动态相分离解释了可编程恢复的开始。最后,利用文献报道的实验结果对所提出的模型进行了验证。这项研究有望为制定水触发 SMP 中动态相分离与可编程恢复起始之间的构成关系提供基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dynamic phase separation model for glass transition behavior in water-triggered shape memory polymer towards programmable recovery onset
Water-triggered shape memory polymers (SMPs) have been extensively studied for biomedical applications due to their advantages of non-thermal actuation capability. However, few studies have been carried out to explore the working principle of shape recovery onset, which is essentially determined by the complex reactions between polymer macromolecules and water molecules. In this study, we developed a phase separation model to describe the dynamic glass transition in water-triggered SMPs. Based on the phase transition theory, dense and dilute phase separations of polymer macromolecules can be achieved when the dynamic diffusions of water molecules in the SMPs undergo dehydration and absorption processes, respectively. Then, the dynamic glass transition is resulted from the dehydration and absorption of water molecules, leading to the dense and dilute phases in the SMPs. Therefore, a free-energy equation has been developed to characterize the recovery onset, in which the mixing free energy and elastic free energy are originated from the Flory-Huggins solution theory and phase separation model, respectively. Moreover, the glass transition and its connection to shape recovery behaviors, i.e., recovery ratio, relaxation time and dynamic mechanical modulus, have also been investigated, according to the Fick’s diffusion law. Meanwhile, onset of programmable recovery has been explained by the dynamic phase separation, based on the transpiration theory and permeability model. Finally, the proposed model is verified using the experimental results reported in the literature. This study is expected to provide a fundamental approach to formulate the constitutive relationship between the dynamic phase separation and programmable recovery onset in the water-triggered SMPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical properties and cage transformations in CO2-CH4 heterohydrates: a molecular dynamics and machine learning study Reconfigurable narrow-band bandpass filter using electrically-coupled open-loop resonators based on liquid crystals Controllable location-dependent frequency conversion based on space-time transformation optics On-chip photonic digital-to-analog converter by phase-change-based bit control Spontaneous Anomalous Hall effects in magnetic and non-magnetic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1