中点喷射式无轴承永磁同步电机的扭矩系统建模和电磁耦合特性分析

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Transactions on Electrical Energy Systems Pub Date : 2024-04-22 DOI:10.1155/2024/3078894
Wenshao Bu, Hang Li
{"title":"中点喷射式无轴承永磁同步电机的扭矩系统建模和电磁耦合特性分析","authors":"Wenshao Bu,&nbsp;Hang Li","doi":"10.1155/2024/3078894","DOIUrl":null,"url":null,"abstract":"<p>Taking the Midpoint Injection type Bearingless Permanent Magnet Synchronous Motor (MPI-BL-PMSM) as an object, to solve its problems of large torque pulsation and insufficient suspension force when adopting Midpoint Suspension Current Unilateral Injection (MPSC-UI), a Midpoint Suspension Current Bilateral Injection (MPSC-BI) solution is proposed. Based on the half-winding structure of MPI-BL-PMSM, and from the electromechanical energy conversion principle, the torque model for MPSC-BI solution is established. On this basis, the torque model for MPSC-UI method was derived. The correctness of the established torque mathematical models based on half-winding structure was verified through the finite element method (FEM), and the “dual-frequency” electromagnetic coupling characteristics of suspension current on electromagnetic torque were compared and analyzed from the perspectives of theoretical model and FEM simulation. The results indicate that the MPSC-BI method can effectively suppress or avoid the torque pulsation coupled by suspension current and can obtain about 1-time increase of controllable suspension force; the advantages of MPSC-BI solution in dynamic torque decoupling characteristics are demonstrated, while the only downside is that the coupling effect of torque current on radial suspension force is slightly greater than that of the MPSC-UI method.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torque System Modeling and Electromagnetic Coupling Characteristics Analysis of a Midpoint Injection Type Bearingless Permanent Synchronous Magnet Motor\",\"authors\":\"Wenshao Bu,&nbsp;Hang Li\",\"doi\":\"10.1155/2024/3078894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Taking the Midpoint Injection type Bearingless Permanent Magnet Synchronous Motor (MPI-BL-PMSM) as an object, to solve its problems of large torque pulsation and insufficient suspension force when adopting Midpoint Suspension Current Unilateral Injection (MPSC-UI), a Midpoint Suspension Current Bilateral Injection (MPSC-BI) solution is proposed. Based on the half-winding structure of MPI-BL-PMSM, and from the electromechanical energy conversion principle, the torque model for MPSC-BI solution is established. On this basis, the torque model for MPSC-UI method was derived. The correctness of the established torque mathematical models based on half-winding structure was verified through the finite element method (FEM), and the “dual-frequency” electromagnetic coupling characteristics of suspension current on electromagnetic torque were compared and analyzed from the perspectives of theoretical model and FEM simulation. The results indicate that the MPSC-BI method can effectively suppress or avoid the torque pulsation coupled by suspension current and can obtain about 1-time increase of controllable suspension force; the advantages of MPSC-BI solution in dynamic torque decoupling characteristics are demonstrated, while the only downside is that the coupling effect of torque current on radial suspension force is slightly greater than that of the MPSC-UI method.</p>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3078894\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3078894","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

以中点喷射式无轴承永磁同步电机(MPI-BL-PMSM)为对象,针对其采用中点悬浮电流单侧喷射(MPSC-UI)时转矩脉动大、悬浮力不足的问题,提出了中点悬浮电流双侧喷射(MPSC-BI)解决方案。基于 MPI-BL-PMSM 的半绕组结构,并从机电能量转换原理出发,建立了 MPSC-BI 解决方案的转矩模型。在此基础上,推导出了 MPSC-UI 方法的转矩模型。通过有限元法(FEM)验证了所建立的基于半绕组结构的转矩数学模型的正确性,并从理论模型和 FEM 仿真的角度对比分析了悬浮电流对电磁转矩的 "双频 "电磁耦合特性。结果表明,MPSC-BI 方法能有效抑制或避免悬浮电流耦合的转矩脉动,并能使可控悬浮力提高约 1 倍;MPSC-BI 方案在动态转矩解耦特性方面的优势得到了体现,唯一的缺点是转矩电流对径向悬浮力的耦合效应略大于 MPSC-UI 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Torque System Modeling and Electromagnetic Coupling Characteristics Analysis of a Midpoint Injection Type Bearingless Permanent Synchronous Magnet Motor

Taking the Midpoint Injection type Bearingless Permanent Magnet Synchronous Motor (MPI-BL-PMSM) as an object, to solve its problems of large torque pulsation and insufficient suspension force when adopting Midpoint Suspension Current Unilateral Injection (MPSC-UI), a Midpoint Suspension Current Bilateral Injection (MPSC-BI) solution is proposed. Based on the half-winding structure of MPI-BL-PMSM, and from the electromechanical energy conversion principle, the torque model for MPSC-BI solution is established. On this basis, the torque model for MPSC-UI method was derived. The correctness of the established torque mathematical models based on half-winding structure was verified through the finite element method (FEM), and the “dual-frequency” electromagnetic coupling characteristics of suspension current on electromagnetic torque were compared and analyzed from the perspectives of theoretical model and FEM simulation. The results indicate that the MPSC-BI method can effectively suppress or avoid the torque pulsation coupled by suspension current and can obtain about 1-time increase of controllable suspension force; the advantages of MPSC-BI solution in dynamic torque decoupling characteristics are demonstrated, while the only downside is that the coupling effect of torque current on radial suspension force is slightly greater than that of the MPSC-UI method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
期刊最新文献
Current-Limiting Strategy for Unbalanced Low-Voltage Ride Through of the SMSI-MG Based on Coordinated Control of the Generator Subunits A Scalable and Coordinated Energy Management for Electric Vehicles Based on Multiagent Reinforcement Learning Method Technoeconomic Conservation Voltage Reduction–Based Demand Response Approach to Control Distributed Power Networks A Universal Source DC–DC Boost Converter for PEMFC-Fed EV Systems With Optimization-Based MPPT Controller Optimal Scheduling Strategy of Wind–Solar–Thermal-Storage Power Energy Based on CGAN and Dynamic Line–Rated Power
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1