路面检测系统

Aditya Patil, Aniket Kshirsagar, Suraj Lokhande, Suraj Jorwar, Prof. Anuja Garande
{"title":"路面检测系统","authors":"Aditya Patil, Aniket Kshirsagar, Suraj Lokhande, Suraj Jorwar, Prof. Anuja Garande","doi":"10.32628/ijsrset2411259","DOIUrl":null,"url":null,"abstract":"Traditional road inspections are manual processes, prone to human error and inefficiencies. This paper presents a novel approach for automated roadway inspection using a Convolutional Neural Network (CNN) model. Our system leverages computer vision techniques to detect potholes and speed breakers on road surfaces from images. We developed a CNN model trained on a comprehensive dataset of road images containing various pothole and speed breaker types, lighting conditions, and road backgrounds. The model achieved an accuracy of 93% in detecting these road defects, demonstrating the effectiveness of deep learning for automated roadway inspections. This system has the potential to significantly improve the efficiency and objectivity of road inspections, leading to faster repairs and improved road safety","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"18 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roadway Inspection System\",\"authors\":\"Aditya Patil, Aniket Kshirsagar, Suraj Lokhande, Suraj Jorwar, Prof. Anuja Garande\",\"doi\":\"10.32628/ijsrset2411259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional road inspections are manual processes, prone to human error and inefficiencies. This paper presents a novel approach for automated roadway inspection using a Convolutional Neural Network (CNN) model. Our system leverages computer vision techniques to detect potholes and speed breakers on road surfaces from images. We developed a CNN model trained on a comprehensive dataset of road images containing various pothole and speed breaker types, lighting conditions, and road backgrounds. The model achieved an accuracy of 93% in detecting these road defects, demonstrating the effectiveness of deep learning for automated roadway inspections. This system has the potential to significantly improve the efficiency and objectivity of road inspections, leading to faster repairs and improved road safety\",\"PeriodicalId\":14228,\"journal\":{\"name\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Science, Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/ijsrset2411259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的道路检测都是人工操作,容易出现人为错误,效率低下。本文介绍了一种使用卷积神经网络(CNN)模型进行自动路面检测的新方法。我们的系统利用计算机视觉技术从图像中检测路面上的坑洞和减速带。我们开发了一个 CNN 模型,该模型是在一个包含各种坑洞和减速带类型、光照条件和道路背景的综合道路图像数据集上进行训练的。该模型在检测这些道路缺陷方面达到了 93% 的准确率,证明了深度学习在道路自动检测方面的有效性。该系统有望显著提高道路检测的效率和客观性,从而加快维修速度并改善道路安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Roadway Inspection System
Traditional road inspections are manual processes, prone to human error and inefficiencies. This paper presents a novel approach for automated roadway inspection using a Convolutional Neural Network (CNN) model. Our system leverages computer vision techniques to detect potholes and speed breakers on road surfaces from images. We developed a CNN model trained on a comprehensive dataset of road images containing various pothole and speed breaker types, lighting conditions, and road backgrounds. The model achieved an accuracy of 93% in detecting these road defects, demonstrating the effectiveness of deep learning for automated roadway inspections. This system has the potential to significantly improve the efficiency and objectivity of road inspections, leading to faster repairs and improved road safety
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UGC Guidelines on Sustainable and Vibrant University- Industry Linkage System for Indian Universities, 2024 Leachate as a Fertilizer Artificial Intelligence in Healthcare : A Review Advancements in Quadcopter Development through Additive Manufacturing: A Comprehensive Review Sensing Human Emotion using Emerging Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1