利用再调节水库减轻水位波动

IF 1.7 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES River Research and Applications Pub Date : 2024-04-21 DOI:10.1002/rra.4290
Ali Mchayk, H. Marttila, Björn Klöve, Ali Torabi Haghighi
{"title":"利用再调节水库减轻水位波动","authors":"Ali Mchayk, H. Marttila, Björn Klöve, Ali Torabi Haghighi","doi":"10.1002/rra.4290","DOIUrl":null,"url":null,"abstract":"The role of hydropower as a renewable and balancing power source is expected to increase in a Net Zero Emissions by 2050 scenario. As a common phenomenon in hydropower plants, hydropeaking will become more prominent, resulting in additional stresses on the ecological status of rivers. Here we propose a novel approach to design and operate auxiliary reservoirs called re‐regulation reservoirs (RRR) that aim to mitigate the adverse impacts of hydropeaking on rivers. A re‐regulation reservoir aims at smoothing flow fluctuations caused by hydropeaking by diverting and retaining parts of high flows and returning them back to river corridors during low flows. Using actual data from a hydropeaking‐influenced river system, the operation and efficiency of potential reservoirs have been investigated. An open‐access algorithm was developed to analyze the influence of the reservoirs to mitigate hydropeaking, considering peak and minimum flow and up‐ and down‐ramping rates. The findings illustrate that, in most cases, the required reservoir volume increases as the flow thresholds become more stringent. Nonetheless, several exceptions were observed, where larger reservoir volumes were required compared with cases with more stringent thresholds. These findings highlight the importance of understanding the impact of flow adjustments, while carefully considering the river regime, sub‐daily flow patterns, and unique characteristics of the river's ecosystem. Our approach shows theoretical possibilities for regulating hydropeaking and provides a basis for optimizing re‐regulation reservoirs, contributing to practical and adaptable strategies for sustainable hydropower management without increasing the operational cost of power systems.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydropeaking mitigation with re‐regulation reservoirs\",\"authors\":\"Ali Mchayk, H. Marttila, Björn Klöve, Ali Torabi Haghighi\",\"doi\":\"10.1002/rra.4290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of hydropower as a renewable and balancing power source is expected to increase in a Net Zero Emissions by 2050 scenario. As a common phenomenon in hydropower plants, hydropeaking will become more prominent, resulting in additional stresses on the ecological status of rivers. Here we propose a novel approach to design and operate auxiliary reservoirs called re‐regulation reservoirs (RRR) that aim to mitigate the adverse impacts of hydropeaking on rivers. A re‐regulation reservoir aims at smoothing flow fluctuations caused by hydropeaking by diverting and retaining parts of high flows and returning them back to river corridors during low flows. Using actual data from a hydropeaking‐influenced river system, the operation and efficiency of potential reservoirs have been investigated. An open‐access algorithm was developed to analyze the influence of the reservoirs to mitigate hydropeaking, considering peak and minimum flow and up‐ and down‐ramping rates. The findings illustrate that, in most cases, the required reservoir volume increases as the flow thresholds become more stringent. Nonetheless, several exceptions were observed, where larger reservoir volumes were required compared with cases with more stringent thresholds. These findings highlight the importance of understanding the impact of flow adjustments, while carefully considering the river regime, sub‐daily flow patterns, and unique characteristics of the river's ecosystem. Our approach shows theoretical possibilities for regulating hydropeaking and provides a basis for optimizing re‐regulation reservoirs, contributing to practical and adaptable strategies for sustainable hydropower management without increasing the operational cost of power systems.\",\"PeriodicalId\":21513,\"journal\":{\"name\":\"River Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"River Research and Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4290\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4290","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

预计在 2050 年实现净零排放的情况下,水力发电作为可再生和平衡电源的作用将越来越大。作为水电站的一种常见现象,水力发电将变得更加突出,从而对河流的生态状况造成额外压力。在此,我们提出了一种设计和运行辅助水库(称为再调节水库 (RRR))的新方法,旨在减轻水力湍动对河流的不利影响。再调节水库旨在通过分流和截留部分高流量,并在低流量时将其送回河流走廊,从而平缓水力湍动造成的流量波动。利用受水力壅塞影响的河流系统的实际数据,对潜在水库的运行和效率进行了研究。开发了一种开放式算法,用于分析水库对缓解水位陡涨的影响,同时考虑到高峰流量和最小流量以及上下调节率。研究结果表明,在大多数情况下,随着流量阈值变得更加严格,所需的蓄水池容积也会增加。不过,也发现了一些例外情况,即与阈值更严格的情况相比,所需的蓄水池容积更大。这些发现凸显了了解流量调整的影响的重要性,同时要仔细考虑河流的水系、次日流量模式以及河流生态系统的独特性。我们的方法展示了调节水力发电的理论可能性,并为优化再调节水库提供了基础,有助于在不增加电力系统运行成本的情况下,为可持续水力发电管理制定实用且适应性强的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydropeaking mitigation with re‐regulation reservoirs
The role of hydropower as a renewable and balancing power source is expected to increase in a Net Zero Emissions by 2050 scenario. As a common phenomenon in hydropower plants, hydropeaking will become more prominent, resulting in additional stresses on the ecological status of rivers. Here we propose a novel approach to design and operate auxiliary reservoirs called re‐regulation reservoirs (RRR) that aim to mitigate the adverse impacts of hydropeaking on rivers. A re‐regulation reservoir aims at smoothing flow fluctuations caused by hydropeaking by diverting and retaining parts of high flows and returning them back to river corridors during low flows. Using actual data from a hydropeaking‐influenced river system, the operation and efficiency of potential reservoirs have been investigated. An open‐access algorithm was developed to analyze the influence of the reservoirs to mitigate hydropeaking, considering peak and minimum flow and up‐ and down‐ramping rates. The findings illustrate that, in most cases, the required reservoir volume increases as the flow thresholds become more stringent. Nonetheless, several exceptions were observed, where larger reservoir volumes were required compared with cases with more stringent thresholds. These findings highlight the importance of understanding the impact of flow adjustments, while carefully considering the river regime, sub‐daily flow patterns, and unique characteristics of the river's ecosystem. Our approach shows theoretical possibilities for regulating hydropeaking and provides a basis for optimizing re‐regulation reservoirs, contributing to practical and adaptable strategies for sustainable hydropower management without increasing the operational cost of power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
River Research and Applications
River Research and Applications 环境科学-环境科学
CiteScore
4.60
自引率
9.10%
发文量
158
审稿时长
6 months
期刊介绍: River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.
期刊最新文献
Scenario Planning Management Actions to Restore Cold Water Stream Habitat: Comparing Mechanistic and Statistical Modeling Approaches Environmental Factors Associated With Fish Reproduction in Regulated Rivers Stream Restoration Effects on Habitat and Abundance of Native Cutthroat Trout Simulation‐Based Assessment of Fine Sediment Transport to Support River Restoration Measures Going to the archives: Combining palaeoecological and contemporary data to support river restoration appraisals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1