使用新型三轴试验装置,根据弹性波速度绘制润湿-干燥曲线

IF 0.7 Q4 MECHANICS Studia Geotechnica et Mechanica Pub Date : 2024-04-21 DOI:10.2478/sgem-2024-0006
Muhammad Irfan, A. Rasool, Mubashir Aziz, Umair Ali, Fawad Niazi, Taro Uchimura
{"title":"使用新型三轴试验装置,根据弹性波速度绘制润湿-干燥曲线","authors":"Muhammad Irfan, A. Rasool, Mubashir Aziz, Umair Ali, Fawad Niazi, Taro Uchimura","doi":"10.2478/sgem-2024-0006","DOIUrl":null,"url":null,"abstract":"\n The relationship between the soil water characteristic curve (SWCC) and the mechanical behavior of unsaturated soil is imperative and has been well investigated. However, the correlation between elastic wave velocity along the wetting and drying paths of SWCC is largely unknown due to the nonavailability of a standard experimental setup for such a purpose. An ordinary triaxial apparatus has been modified for laboratory assessment of SWCCs under different Ko stresses, along with the measurement of shear and compression wave velocities in due course. The main aim of the study is to draw SWCC, wave velocity characteristic curve (WVCC), and a Poisson’s ratio characteristic curve (PRCC) and to establish the phenomenon that these curves possess hysteresis. The Poisson’s ratio was obtained indirectly by measuring Vp and Vs. Three soil samples with relative densities of 85%, 56%, and 39% were prepared and placed in a modified triaxial test apparatus under wetting and drying cycles. The test results showed that the newly developed apparatus is accurately capable of measuring SWCC. Owing to the similarity in the shape of wave velocity and Poisson’s ratio, response to SWCC, WVCC, and PRCC are drawn. The phenomenon of stress history and the effective stress of the soil affected the behavior during wetting and drying paths.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Wetting-Drying Curves from Elastic Wave Velocities Using a Novel Triaxial Test Apparatus\",\"authors\":\"Muhammad Irfan, A. Rasool, Mubashir Aziz, Umair Ali, Fawad Niazi, Taro Uchimura\",\"doi\":\"10.2478/sgem-2024-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The relationship between the soil water characteristic curve (SWCC) and the mechanical behavior of unsaturated soil is imperative and has been well investigated. However, the correlation between elastic wave velocity along the wetting and drying paths of SWCC is largely unknown due to the nonavailability of a standard experimental setup for such a purpose. An ordinary triaxial apparatus has been modified for laboratory assessment of SWCCs under different Ko stresses, along with the measurement of shear and compression wave velocities in due course. The main aim of the study is to draw SWCC, wave velocity characteristic curve (WVCC), and a Poisson’s ratio characteristic curve (PRCC) and to establish the phenomenon that these curves possess hysteresis. The Poisson’s ratio was obtained indirectly by measuring Vp and Vs. Three soil samples with relative densities of 85%, 56%, and 39% were prepared and placed in a modified triaxial test apparatus under wetting and drying cycles. The test results showed that the newly developed apparatus is accurately capable of measuring SWCC. Owing to the similarity in the shape of wave velocity and Poisson’s ratio, response to SWCC, WVCC, and PRCC are drawn. The phenomenon of stress history and the effective stress of the soil affected the behavior during wetting and drying paths.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2024-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2024-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

土壤水分特性曲线(SWCC)与非饱和土壤力学行为之间的关系至关重要,并且已经得到了深入研究。然而,由于没有标准的实验装置,SWCC 沿着湿润和干燥路径的弹性波速之间的相关性在很大程度上是未知的。我们对一台普通的三轴仪器进行了改装,用于在不同的高应力下对 SWCC 进行实验室评估,并适时测量剪切波速和压缩波速。研究的主要目的是绘制 SWCC、波速特性曲线(WVCC)和泊松比特性曲线(PRCC),并确定这些曲线具有滞后现象。通过测量 Vp 和 Vs 间接获得泊松比。制备了三个相对密度分别为 85%、56% 和 39% 的土样,并将其置于湿润和干燥循环下的改进型三轴试验装置中。测试结果表明,新开发的仪器能够准确测量 SWCC。由于波速和泊松比的形状相似,得出了 SWCC、WVCC 和 PRCC 的响应。应力历史现象和土壤的有效应力影响了湿润和干燥过程中的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Wetting-Drying Curves from Elastic Wave Velocities Using a Novel Triaxial Test Apparatus
The relationship between the soil water characteristic curve (SWCC) and the mechanical behavior of unsaturated soil is imperative and has been well investigated. However, the correlation between elastic wave velocity along the wetting and drying paths of SWCC is largely unknown due to the nonavailability of a standard experimental setup for such a purpose. An ordinary triaxial apparatus has been modified for laboratory assessment of SWCCs under different Ko stresses, along with the measurement of shear and compression wave velocities in due course. The main aim of the study is to draw SWCC, wave velocity characteristic curve (WVCC), and a Poisson’s ratio characteristic curve (PRCC) and to establish the phenomenon that these curves possess hysteresis. The Poisson’s ratio was obtained indirectly by measuring Vp and Vs. Three soil samples with relative densities of 85%, 56%, and 39% were prepared and placed in a modified triaxial test apparatus under wetting and drying cycles. The test results showed that the newly developed apparatus is accurately capable of measuring SWCC. Owing to the similarity in the shape of wave velocity and Poisson’s ratio, response to SWCC, WVCC, and PRCC are drawn. The phenomenon of stress history and the effective stress of the soil affected the behavior during wetting and drying paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
期刊最新文献
Modeling of rigid inclusion ground improvements in large-scale geotechnical simulations Seismicity and Tectonics of the Republic of Kosovo Small-strain stiffness of selected anthropogenic aggregates from bender element tests The Role of Spatial Distribution of Geotechnical Soil Parameters in Site Investigation Geometrization of a 3D numerical model of an underground facility based on the results of terrestrial laser scanning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1